<u>1. ATOMIC STRUCTURE</u>

1.	Rutherford's atomic model is also known as	
2.	Quantum theory was proposed by	
3.	Electromagnetic radiation is in the form of packets called	
4.	Planck's equation is	
5.	Value of planck's constant is	
6.	Angular momentum of the revolving electron is	
7.	"In presence of applied magnetic field spectral lines split into fine spectrum." This phenomenon is called	
8.	According to sommerfeld, shape of the orbital is	
9.	As per sommerfeld's model if n = k, the shape of the orbital is	
10.	Maximum value of 'I' is	
11.	Wave equation was proposed by	
12.	Dual nature of electron was proposed by	
13.	Electrons revolve round the nucleus in and directions.	
14.	Azimuthal quantum number is also called as	
15.	For given 'I', m can have a maximum of values.	
16.	The upper & lower limits of 'm' for I = 3 are	
17.	Spin values of electron are	
18.	Region in space where there is a finite probability of finding an electron is	
19.	Shape of s - orbital is, p - orbital is, d - orbital is	
20.	Orbitals having indentical energy are called	
21.	Valency configuration of cr (24) is, cu (29) is	
22.	Number of sub - energy levels in an orbit is equal to	
23.	(n + l) value of 1 s - orbital is	
24.	Unit of atomic size is, 1 Angstrom =	
25.	Units of I.P, E.A. are, E A order of halogens is	
26.	Region in space where the probability of finding an electron is zero is	
	2. CHEMICAL BOND	

1. The filling up of valency orbital with 8 electrons is called _____

2. Examples of S - S overlap are _____

3. Examples of P - P overlap are _____

4. Examples of S - P overlap are _____

- 5. Examples of molecules with double bond are _____
- 6. Examples of molecules with triple bond are _____
- 7. Examples of molecules with co-ordinate covalent bond are _____
- 8. End-on-End overlap leads to _____
- 9. Side ways overlap leads to _____
- 10. Molecules with linear shape are _____
- 11. Pyramidal shaped molecules are _____
- 12. Shape of PCI₅ is _____
- 13. Shape of H₂O is _____
- 14. _____ orbitals can form sigma bond.
- 15. _____ orbitals can form Pi bond.
- 16. In co-ordinate covalent bond, both electrons were donated by _____

3. PERIODIC CLASSIFICATION OF ELEMENTS

- 1. Examples of Doberenier traids are _____
- 2. According to Doberenier, in a traid the Arithmatic mean at atomic weight of 1st & 3rd elements is equal to the atomic weight of _____
- 3. As per Newland's concept of octaves, properties of 1st elements resemble properties of _____

4. Mendeleef's periodic table is based on _____

5. Mendeleef's eka aluminium is ______ eka boron is ______, eka silicon is

6. Modern periodic table is based on _____

- 7. The modern periodic table has ______ groups & ______ periods.
- 8. In the modern periodic table, 1st period has ______ elements, 2nd & 3rd periods have ______ elements, 4th & 5th periods have ______ elements 6th period has ______
- 9. General electronic configuration of S block elements is ______, P block elements is ______,

10. Inert gas configuration is _____

11. Elements form 57 to 71 are ______ & 90 to 103 are _____

12. In a group, atomic size ______ from top to bottom and in a period it ______ from left to right.

13. Electronegativity is measured by using _____

14. Highest electronegative element is ______, its value is ______

15. Highest electro positive elements is _____

16.	Halogens are	_ they belong to	
17.	Electropositive elements are & a	are agents	3.
18.	Electronegative elements are &	are agent	s.
19.	In a period, from left to right R.P.	and O.P.	
20.	In a group, from to bottom R.P	and O.P.	

4. ALKALINE EARTH METALS

_

Group IIA elements	are called		
Radio active eleme	nt is		
. For group II A elements, melting & boiling points do not follow			
Alkaline earth meta	Is are very reactive due to _		
	-	_	, with
	forms peroxides when hea	ted in excess oxygen.	
Oxides of group II A	elements are		
Be H ₂ is prepared b	by reducing BeCl ₂ with		
Hydrides of group II	A area	gents.	
	is covalent & hygroscopic.		
Chlorides of Mg, Ca	a, Sr & Ba are		
Group II A elements	are extracted by		
. To increase electrolytic conductivity & to decrease (lower) melting point of Mg			
. Two ores of Mg are			
 No of H₂O molecules present in Epsom salt are 			
 During extraction of Mg, cathode is anode is 			
7. To prevent oxidation of Mg is passed over floating Mg.			
	Mineral	Formulae	
	Beryl	$\operatorname{Be}_3\operatorname{Al}_2(\operatorname{SiO}_3)_6$	
	Dolomite	CaCO ₃ . Mg CO ₃	
	Carnallite	Mg C <i>I</i> ₂ . KC <i>I</i> . 6H ₂ O	
	Barytes	BaSO ₄	
	Magnasite	MgCO ₃	
	Epsom salt	MgSO ₄ . 7H ₂ O	
	Radio active eleme For group II A eleme Alkaline earth meta Group II A elements H_2 & form Oxides of group II A Be H_2 is prepared k Hydrides of group II Chlorides of Mg, Ca Group II A elements To increase electro Two ores of Mg are No of H_2O molecul During extraction of	Radio active element is	Radio active element is

5. SOLUTIONS

1.	Solution is a homogeneous mixture of		
2.	In a solution, the component which is taken in relatively less quantity is called & the one which is comparatively in large quantity is		
3.	In a solution, if solvent is water, the resultant solution is		
4.	is defined as the maximum amount of solute by weight in grams dissolved in 100 gm of solvent at constant temperature.		
5.	solubility of a compounds depends on		
6.	On increasing temperature, solubility of Ce ₂ (SO ₄) ₃ and NaC/		
7.	Polar solvents are soluble in		
8.	is defined as the amount of solute present in unit volume solution.		
9.	Concentration is expressed in		
10.	Weight (W%) =, Volume (V%) =		
11.	Molarity M =		
12.	Mole fraction x _A =, x _B if A, B are solute & solvent.		
13.	. Molarity is dependent on		
14.	. Mole fraction is independent of		
15.	. A solution is a solution of Known Concentration.		
16.	Standard solutions are Prepared in		
17.	The Process of a molecule giving rise to ions is		
18.	Examples of strong electrolytes are, weak electrolytes are non - electrolytes are		
19.	Effect ofand increases ionisation.		
20.	Super saturated solutions are		
21.	, and have no units.		
	6. ACIDS, BASES AND SALTS		
1.	Acids are formed when react with water.		
2.	Bases are formed when react with water.		
3.	Acids are to taste while bases are to taste.		
4.	Colour of Methyl orange indicator in acidic medium is		
5.	Colour of Methyl orange indicator in basic medium is		

6.	Colour of phenapthalene indicator is
7.	Aqueous solutions of acids & bases show
8.	According to Arrhenius, acids give & bases give on dilution.
9.	According to Arrhenius theory, Co ₂ , SO ₂ , SO ₃ have nature CaO, FeO have nature.
10.	Proton in H ₂ O is in the form of
11.	Product of [H ⁺] [OH ⁻] ion concentrations in one mole of water is defined as
12.	Value of K _w at 25 ^o C is
13.	Value of K _w increases with
14.	P ^H is defined as
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
15.	For acedic solution, the [H ⁺], P ^H
16.	For basic solution, the [H ⁺], P ^H
17.	For neutral solution, the [H ⁺]P ^H
18.	Heat of neutralisation is
19.	Heat of neutralisation for weak acid & strong base is
20.	Completely ionized acids and bases are called

21. Incompletely ionized acids and bases are called _____

P ^H of some Common fluids		
Sample	P ^H	
Gastric juice in the stomach	1 - 2	
Lemon juice	2 - 4	
Vinegar	3	
Grape juice	3.2	
Orange juice	3.5	
Urine	4.8 - 7.5	
Aerated water	5.5	
Saliva	6.4 - 6.9	
Pure water	7	
Blood	7.32 - 7.45	

Formulae		
Acetic acid	CH3 COOH	
Nitric acid	H NO ₃	
Phosphoric acid	H ₃ PO ₄	
Carbonic acid	H ₂ CO ₃	
Sulphuric acid	H ₂ SO ₄	
Hydrochloric acid	HCL	
Sodium Hydroxide	NaOH	
Calcium Hydroxide	Ca(OH) ₂	
Zinc Hydroxide	Zn(OH) ₂	
Ammonium Hydroxide	NH₄OH	
Sodium Acetate	CH ₃ COONa	

7. CHEMISTRY OF CARBON COMPOUNDS

1.	. The occurrence of same element in one or more forms is		
2.	Bond angle in diamond is, graphite is		
3.	Bond length in diamond is, graphite is		
4.	In diamond carbon atoms are arranged & in graphite they have arrangement.		
5.	Full form of C ₆₀ is		
6.	In C ₆₀ , carbon atoms are arranged in, bond length is		
7.	Carbon monoxide reacts with haemoglobin to give		
8.	6 CO ₂ + 6 H ₂ O> 6 O ₂ +		
	6n CO ₂ + 5n H ₂ O> 6 NO ₂ +		
9.	CO ₂ is used as		
10.	Solid CO ₂ is called		
11.	. The Compounds in which all the Valancies are not satisfied are called		
12.	2		
13.	 Compounds having same molecular formula but different structures are called and the Phenomenon is called 		
14.	L.P.G. is		
15.	5 is 'store of sun'. Kind of coal with 95% carbon is		
16.	Pyrolysis of coal gives		
17.	Compounds containing exclusively carbon & hydrogen are called		
18.	Example of aromatic hydrocarbon is		
19.	Saturated hydrocarbons are with general formula		

- 20. unsaturated hydro carbons are ______ with general formulae ______ & _____
- 21. Alkanes are also called as _____
- 22. LPG gas contains large amount of _____
- 23. Unsaturated hydrocarbons have ______ b/n two carbon atoms.
- 24. Complete burning of a substance is called _____
- 25. on removing a hydrogen from alkanes, _____ are formed
- 26. Alkanes undergo _____ reactions
- 27. Alkenes are also called as _____
- 28. Alkenes & alkynes Participate in _____ reactions
- 29. Alkenes polymerise to form long chain compounds known as ______ & the Phenomenon is called ______
- 30. Alkanes, alkenes, alkynes are _____
- 31. ______ is used in welding & artificial ripening of fruits.
- 32. Carbon togeather with heteroatoms is called a _____

Some functional groups and their formula		
Functional group	Name	Example
– C – OH	Alcohol	CH ₃ OH [Methyl Alcohol]
– C – CHO	Aldehyde	CH ₃ CHO [Acetaldetyde]
-C - C = 0	Ketone	CH ₃ COCH ₃
– C – COOH	Acid	CH ₃ COOH [Acetic acid]
- C - O - H	Ether	$CH_3 - O - CH_3$ [Dimethyl Amine]
– C – NH ₂	Amine	C ₃ H ₇ NH ₂ [Propyl Amine]
– C – COOR	Ester	CH ₃ COOC ₂ H ₅

8.CARBOHYDRATES & PROTIENS

- 1. Poly Hydroxy aldehydes / Ketones are called _____
- 2. General formula of carbohydrates is _____
- 3. Sweetest sugar is _____
- 4. Examples of Monosaccharides are _____
- 5. Examples of oligosaccharides are _____
- 6. Examples of Polysaccharides are _____

7. $6 H_2O + 6 CO_2 \xrightarrow{\text{Sunlight}}_{\text{Chlorophyll}}$

8.	The amount of energy made available by consumption of one gram of a substance is known as
	its

9.	The calorific value of glucose is		
10.	Ammonical silver Nitrate solution is called		
11.	In Tollen's test, Ag ⁺ ions reduce to		
12.	Bendict's solution contains		
13.	The spent cane is called		
14.	Process of passing lime, Ca(OH) ₂ is called		
15.	Process of passing CO ₂ gas is called		
16.	Process of passing SO ₂ gas is called		
17.	The Precipitates of defecation, carbonation & sulphitation is called and is useful as		
18.	The purified juice is called		
19.	The thick black liquid obtained after the seperation of crystals is called		
20.	By product of sugar industry is		
21.	is the process of breaking down of large molecules into small molecules by the action of enzynes		
22.	Enzynes produced by yeast are		
23.	Salts added for the fast growth of yeast are		
24.	The alcohol produced in fermentation tank is technically called		
25.	The product containing 96% alcohol & 4% water is commercially called		
26.	100% alcohol is called		
27.	Consumption of alcohol leads to		
28.	Amino acids have and groups.		
29.	are called the salt like structures of aminoacids.		
30.	are building blocks of protiens.		
31.	Essential amino acids are		
32.	CO – NH bond is called		
33.			

34. Number of amino acids present in Hemoglobin is _____

- 35. Protiens act as _____
- 36. If the order of amino acids in hemoglobin is changed, then it is called ____

37. Harmone regulating blood sugar level is _____

38. Protiens are polymeric compounds of ______

9.0ILS AND FATS

1. Chemical composition of oils are _____

2. _____ are principal sources of oils and fats.

3. _____ oils find medicinal values.

4. Catalyst used hydrogenation of oils is _____

5. Chemically soap is a sodium or pottasium salt of _____

6. Hydrolysis of oils & fats in presence of base gives _____ & the process is called _____

7. Deodrant or anti - microbial soaps contain _____

8. Shaving soaps contain excess of _____

9. Transparent soaps contain _____

10. Dry cleaning soaps and cosmetics have _____

- 11. 2Na₃ PO₄ + 3 CaC*l*₂ —> _____
- 12. _____ are salts of ABS and FAS.

13. _____ & _____ are examples of oils giving seeds.

14. Hydrogenation of oils improve _____

Name of Fatty Acid	Formula
Lauric acid	С ₁₁ Н ₂₃ СООН
Myristic acid	С ₁₃ Н ₂₇ СООН
Myristoleic acid	С ₁₃ Н ₂₅ СООН
Palmitic acid	С ₁₅ Н ₁₃ СООН
Stearic acid	С ₁₇ Н ₃₅ СООН
Oleic acid	С ₁₇ Н ₃₃ СООН
Linoleic acid	С ₁₇ Н ₃₁ СООН
Linolenic acid	С ₁₇ Н ₂₉ СООН

10.CHEMISTRY & INDUSTRY

1.	Cement was invented by
2.	is dirty grey powder consisting of calcium silicates & aluminates
3.	Raw slurry or raw meal is called
4.	Chemical composition of glas is
5.	Pieces of broken glass is called
6.	process of cooling glass is called
7.	Glass blowing is possible with
8.	impart colour to glass
9.	Plastics are
10.	Examples of natural adhesives are
11.	Examples of synthetic adhesives are
12.	is used as nail polish remover
13.	Cold - cream is an emulsion of
14.	Talc contains
15.	First synthetic dye was prepared by
16.	Examples of auxochromes are
17.	Examples of chromophores are
18.	is defined as a substance used in prevention, diagnosis, treatment or ure of a disease.
19.	are drugs of modefied form
20.	Petroleum is derived from
21.	Cooking gas contain

22. ______ is decomposition of bigger hydrocarbons into simple.

23. Fertilizers containing micro nutrients are _____

24. Examples of single fertilizers are _____

25. Examples of compound fertilizers are _____

Metal oxide / Metal salt	Colour
Fe ₂ O ₃	Yellow
Feo	Green
Cr ₂ O ₃	Green
MNO ₂	Purple
CuSO ₄	Blue
CuO	Blue
AuCI ₃	Ruby
Cu ₂ O	Red
SeO ₂	Red
CdS	Lemon Yellow