MODEL QUESTION PAPER MATHEMATICS – Paper II A (Algebra, Probability)

Time	: 3 Hours	Max Marks : 75
	Section – A	
I.	Very Short Answer Questions Attempt all Questions. Each Question carries 2	2 marks. 10 x 2 = 20 Marks
1.	If α and β are the roots of the equation $2x^2 + 3$ quadratic equation whose roots are α^3 and β^3 .	-
2.	If the roots of the equation $x^3 - 3x^2 - 6x + 8 =$	0 are in A.P. find them.
3.	If $A = \begin{pmatrix} 2 & 4 \\ & \\ -1 & k \end{pmatrix}$ and $A^2 = \begin{pmatrix} 0 & 0 \\ & \\ 0 & 0 \end{pmatrix}$	find the value of k .
4.	Find the value of the determinant of $\begin{pmatrix} 1 & w \\ w & w \\ w^2 & 1 \end{pmatrix}$	$w^2 = \frac{w^2}{1}$ where $w^3 = 1$.
5.	If ${}^{n}P_{4} = 1680$ find ' <i>n</i> '.	J

If ${}^{21}C_{2r+1} = {}^{21}C_{r-4}$ find '*r*'. 6.

7. Find the term independent of 'x' in

$$\begin{pmatrix} x^5 & - & - \\ & & x^3 \end{pmatrix}^8$$

- 8. If a card is drawn at random from a pack of cards, what is the probability that it is an ace or a diamond.
- 9. Find the sum of the infinite series

10. In a Binominal distribution if the sum of the mean and the variance is 1.8 find the distribution when n = 5.

<u>Section – B</u>

II. Short Answer Questions

Attempt any five questions. Each question carries 4 marks

 $5 \ge 4 = 20$ Marks

- 11. If x is real show that the values of the expression $x^2 - 34x - 71$ do not lie between 5 and 9. $x^2 + 2x - 7$
- 12. For $1 \le r \le n$ prove, with usual notation, that

 ${}^{n}C_{r-1} + {}^{n}C_{r} = {}^{(n+1)}C_{r-1} \text{ find '}r'.$

(2*n*)!

13. Prove that $C_0C_r + C_1C_{r+1} + C_2C_{r+2} + \dots + C_{n-r}C_n = \frac{(2n)!}{(n-r)!(n+r)!}$

14. Find the partial fractions of

$$(2x-1)(x+2)(x-3)$$

 x^3

15. Sum the series $log_3e - log_9e + log_{27}e - log_{81}e + \dots$

16. If
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
 then show that $A2 - 4A - 5I = O$.

17. If two numbers are selected randomly from 20 consecutive natural numbers find the probability that the sum of the two numbers is(i) an even number (ii) an odd number.

Section - C

- II.Long Answer Questions $5 \ge 7 = 35$ MarksAttempt any five questions. Each question carries 7 marks
- 18. Solve $x^3 18x 35 = 0$ by using Cardan's method.
- 19. Find the number of ways of selecting 11 members for a cricket team from 7 batsmen, 5 bowlers and 3 wicket keepers having atleast 3 bowlers and 2 wicket keepers.

		1.3	1.3.5	1.3.5.7
20.	Find the sum of the series	++		<u> </u>
		3.6	3.6.9	3.6.9.12

21. Solve by Gauss-Jordan method, the system of equations :

x + y + z = 62x + 3y - z = 33x + 5y + 2z = 19

Show that

$$\begin{vmatrix}
a-b-c & 2a & 2a \\
2b & b-c-a & 2b \\
2c & 2c & c-a-b
\end{vmatrix} = (a+b+c)^3$$

23. State and prove Bayes' Theorem.

24. If X is a random variable with the probability distribution

$$P(X = k) = \frac{(k+1)C}{2^k}$$
 (k = 0,1,2,....) then find C and also the

mean of X.

* * *