MATHEMATICS PAPER IIB - MAY 2010

COORDINATE GEOMETRY & CALCULUS

SECTION A VERY SHORT ANSWER TYPE QUESTIONS. Noe : Attempt all questions. Each question carries 2 marks. Find the centre and radius of the circle $\sqrt{1 + m^2}$ $(x^2 + y^2) - 2cx - 2mcy = 0$ Find the equation of the sphere that passes through the point (4, 3, -1) and having its centre (3, 8, 1)

- If (1/2,2) is one extremity of a focal chord of the parabola $y^2=8x$ find the coordinates of the other 3. extremity.
- 4. Find the eccentricity of the Ellipse (in Standard Form) whose length of the latusrectum is half of its minor axis.
- Find thenth derivative of $y = \cos^2 x$. 5.
- Evaluate $\int \frac{e^x(1+x)}{\cos^2(xe^x)} dx$ 6.
- Evaluate $\int \log x \, dx$ 7.
- Evaluate $\int_{0}^{1} \left(\frac{x^2}{1+x^2}\right) dx$ 8.
- Find the area bounded by $y = x^3 + 3$, X-axis, x = -1 and x = 2. 9.
- 10. Form the differential equation corresponding to $y = A\cos 3x + B\sin 3x$ where A<B are parameters.

SECTION B

SHORT ANSWER TYPE QUESTIONS.

Note : Answer any FIVE questions. Each question carries 4 marks.

Show that the tangent at (-1, 2) of the circle $x^2+y^2-4x-8y+7=0$ touches the circle 11. $x^{2}+y^{2}+4x+6y=0$ and also find its point of tangency.

1.

2.

Max. Marks.75

10X2 = 20

5X4 = 20

- 12. Find the value of k if the lines x + y + 2 = 0 and x 2y + k = 0 are conjugate w.r.t $y^2 + 4x 2y 3 = 0$
- 13. Find eccentricity, coordinates of foci and equations of directrices of the ellispse $16y^2-9x^2=144$.
- 14. If PSQ is chord passing through the focus S of a conic and 'l' is semi latus rectum, show that $\frac{1}{SP} + \frac{1}{SO} = \frac{2}{l}$
- 15. Evaluate $\int \frac{1}{2 3\cos 2x} dx$
- 16. Solve $(e^x + 1)ydy + (y + 1)dx = 0$

17. Solve
$$\frac{dy}{dx} + y \sec x = \tan x$$

SECTION C

LONG ANSWER TYPE QUESTIONS.

5X7 =35

Note: Answer any Five of the following. Each question carries 7 marks.

- 18. Find the equation of a circle which passes through the points(5,7),(8,1) and (1,3).
- 19. Find the coordinates of the limiting points of the coaxial system to which the circles $x^2 + y^2 + 10x 4y 1 = 0$ and $x^2 + y^2 + 5x + y + 4 = 0$ are two members
- 20. Show that the equation of the parabola in standard form is $y^2 = 4ax$.

21. If
$$y = e^{m \sin^{-1} x}$$
, then prove that $(1 - x^2) y_{n+2} - (2n+1) x y_{n+1} - (n^2 + m^2) y_n = 0$

- 22. Find the reduction formula for $\int \sin^n x \, dx \, (n \ge 2)$ and hence find $\int \sin^4 x \, dx$.
- 23. Show that $\int_{0}^{\pi/2} \frac{x}{\sin x + \cos x} dx = \frac{\pi}{2\sqrt{2}} \log(\sqrt{2} + 1)$
- 24. Show that the area of the region bounded by $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (ellipse) is π ab. Also deduce the area of the circle $x^2 + y^2 = a^2$