MATHEMATICS PAPER IIA - MAY 2009

ALGEBRA & PROBABILITY

TIME: 3hrs Max. Marks.75

Note: This question paper consists of three sections A,B and C.

SECTION A

Very Short Answer Type Questions.

10X2 = 20

Note: Attempt all questions. Each question carries 2 marks.

- 1. Prove that the roots of $(x-a)(x-b) = h^2$.
- 2. If α,β and 1 are the roots of $x^3-2x^2-5x+6=0$ then find α and β .
- 3. If $A = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \end{bmatrix}$ and $B = \begin{bmatrix} -3 & 4 & 0 \\ 4 & -2 & -1 \end{bmatrix}$ then show that (A+B)' = A' + B'
- 4. If $A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 4 \\ 5 & -6 & x \end{bmatrix}$ and det A = 45, find x.
- 5. If ${}^{n}P_{7} = 42^{n}P_{5}$ and ${}^{n}C_{r} = 210$, find n.
- 6. Find the number of ways of selecting 3 girls and 3 boys out of 7 girls and 6 boys.
- 7. Find the range of the infinite series $\frac{1}{1!} + \frac{1+2}{2!} + \frac{1+2+3}{3!} + \dots$
- 8. A problem in calculus is given to two students A and B whose chances of solving it are 1/3 and 1/4. Find the probability of the problem being solved, if both of them try independently.
- 9. Find the range of x for which the binomial expansion $(7+3x)^{-5}$ is valid.
- 10. If the mean and variance of a binomial variable X are 2.4 and 1.44 respectively then find p and q.

SECTION B

Short Answer Type Questions.

5x4 = 20

Note: Answer any FIVE questions. Each question carries 4 marks.

- 11. If the expression $\frac{x-p}{x^2-3x+2}$ takes all real values for $x \in R$, then find the bounds for p.
- 12. If $\theta \phi = \frac{\pi}{2}$, then show that $\begin{pmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin^2 \theta \end{pmatrix} \begin{pmatrix} \cos^2 \phi & \cos \phi \sin \phi \\ \cos \phi \sin \phi & \sin^2 \phi \end{pmatrix} = 0$
- 13. Find the number of numbers that are greater than 4000 which can be formed using 0,2,4,6,8.
- 14. Prove that $3 \le r \le n$, $n-3_{c_r} + 3$. $n-3_{c_{r-1}} + 3$. $n-3_{c_{r-2}} + n-3_{c_{r-3}} = n_{c_r}$
- 15. Resolve $\frac{x^2-3}{(x+2)(x^2+1)}$ into partial fractions.
- 16. If $y = x + \frac{x^3}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots$, then show that $x = y \frac{y^2}{2!} + \frac{y^3}{3!} \frac{y^4}{4!} + \dots$
- 17. If E_1, E_2 are any two events of a random experiment and P is a probability function, then $P(E_1 \cup E_2) = P(E_1) + P(E_2) P(E_1 \cap E_2)$

SECTION C

Long Answer Type Questions.

5X7 = 35

Note: Answer any Five of the following. Each question carries 7 marks.

- 18. Solve the equation $x^4 + x^3 16x^2 4x + 48 = 0$, the product of two of the roots being 6.
- 19. Show that $\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}^2 = \begin{bmatrix} 2bc a^2 & c^2 & b^2 \\ c^2 & 2ac b^2 & a^2 \\ b^2 & a^2 & 2ab c^2 \end{bmatrix} = (a^3 + b^3 + c^3 3abc)^2$

20. Solve the following simultaneous linear equations by using 'Cramer's rule.

$$3x + 4y + 5z = 18$$

$$2x - y + 8z = 13$$

$$5x - 2y + 7z = 20$$

- 21. Find the sum of the series $\frac{3.5}{5.10} + \frac{3.5.7}{5.10.15} + \frac{3.5.7.9}{5.10.15.20} + \dots$
- 22. If the 2^{nd} , 3^{rd} and 4^{th} terms in the expansion of $(a + x)^n$ are respectively, 240, 720, 1080 find a, x, n.
- 23. A, B, C are three horses in a race. The probability of A to win the race is twice that of B, and probability of B is twice that of C. What are the probabilities of A, B and C to win the race.
- 24. The range of random variable X is $\{0, 1, 2\}$ given that $P(X = 0) = 3c^3$

$$P(X = 1) = 4c - 10c^2$$
; $P(X = 2) = 5c - 1$

i) Find the value of c ii) P (X < 1), P ($1 < X \le 2$) and P ($0 < X \le 3$)

• • •