MATHEMATICS PAPER IB.- MAY 2010.

COORDINATE GEOMETRY (2D&3D & CALCULUS.

TIME : 3hrs	Max. Marks.75
Note: This question paper consists of three sections A,B and C.	
SECTION A	
VERY SHORT ANSWER TYPE QUESTIONS.	10X2 =20

Noe : Attempt all questions. Each question carries 2 marks.

- 1. Find the equation of the straight line passing through (-4, 5) and cutting off equal nonzero intercepts on the coordinate axes.
- 2. Transform the equation x + y + 1 = 0 into normal form.
- 3. Find the ratio in which YZ plane divides the line joining A (2, 4, 5) and B(3, 5, -4). Also find the point of intersection.
- 4. Find the equations of the plane passing through the point (1,1,1) and parallel to the plane x + 2y + 3z 7 = 0
- 5. Find $\lim_{x \to 0} \left(\frac{\sqrt{1+x}-1}{x} \right)$
- 6. Find $\lim_{x \to \infty} \frac{8|x| + 3x}{3|x| 2x}$
 - 7. Show that the function $f(x) = \begin{cases} \frac{\sin 2x}{x} & \text{if } x \neq 0 \\ \frac{\sin 2x}{x} & \text{if } x = 0 \end{cases}$ continuous at 0.
 - 8. If $f(x) = x^2 2^x \log x$, find $f^1(x)$
 - 9. Find Δy and dy for the function $y = \log x$ when x = 3 and $\Delta x = 0.003$.
- 10. Find the equation of the normal to the curve $y = 5 x^4$ at the point (1, 5)

SECTION B

SHORT ANSWER TYPE QUESTIONS.

5X4 =20

Note : Answer any FIVE questions. Each question carries 4 marks.

11. The ends of the hypotenuse of a right angled triangle are (0, 6) and (6, 0). Find the equation of locus of its third vertex.

- 12. When the axes are rotated through an angle 45°, the transformed equation of a curve is $17x^2 16xy + 17y^2 = 225$. Find the original equation of the curve.
- 13. If 3a + 2b + 4c = 0, then show that the equation ax + by + c = 0 represents a family of concurrent straight lines and find the point of concurrency.
- 14. Find the derivatives of the following functions $f(x) = \sin 2x$ from the first principles.
- 15. If $y = ax^{n+1} + bx^{-n}$ then Prove that $x^2y = n(n+1)y$.
- 16. The radius of a circular plate is increasing in length at 0.01 cm/sec. What is the rate at which the area is increasing, when the radius is 12 cm.
- 17. Show that for the function $f = log(x^2 + y^2)$, $f_{XX} + f_{VV} = 0$

SECTION C

LONG ANSWER TYPE QUESTIONS.

5X7 =35

Note: Answer any Five of the following. Each question carries 7 marks.

18. Find the circumcentre of the triangle whose sides are x + y = 0, 2x + y + 5 = 0 and x - y = 2.

19. Show that the area of the triangle formed by the lines $ax^2 + 2hxy + by^2 = 0$ and lx + my + n = 0 is $\frac{n^2\sqrt{h^2 - ab}}{|am^2 - 2hlm + bl^2|}$ sq. units.

- 20. Find the values of k, if the lines joining the origin to the points of intersection of the curve $2x^2 2xy + 3y^2 + 2x y 1 = 0$ and the line x + 2y = k are mutually perpendicular.
- 21. show that the angle between the lines whose direction cosines are given by the equations 31 + m + 5n = 0 and 6mn 2nl + 5lm = 0 iscos⁻¹ $\left(\frac{1}{6}\right)$.
- 22. Find the derivative $\frac{dy}{dx}$ of the function $y = \frac{(1-2x)^{\frac{2}{3}}(1+3x)^{\frac{-3}{4}}}{(1-6x)^{\frac{5}{6}}(1+7x)^{\frac{-6}{7}}}$
- 23. If the tangent at any point on the curve $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ intersects the coordinate axes in A and B, then show that the length AB is a constant.
- 24. Show that when the curved surface of right circular cylinder inscribed in a sphere of radius R is maximum, then the height of the cylinder is $\sqrt{2}R$.