MATHEMATICS PAPER IA.- MARCH 2010.

ALGEBRA, VECTOR ALGEBRA AND TRIGONOMETRY

TIME	2 : 3hrs	Max. Marks.75
SECTION A		
VERY	SHORT ANSWER TYPE QUESTIONS.	10X2 =20
Noe : Attempt all questions. Each question carries 2 marks.		
1.	If $f: Q \to Q$ is defined by $f(x) = 5x + 4$ for all $x \in Q$, find f^{-1}	
2.	Find the domain of the function $f(x) = log(x^2 - 4x + 3)$	
3.	Let $\mathbf{a} = 2\mathbf{i} + 4\mathbf{j} - 5\mathbf{k}$, $\mathbf{b} = \mathbf{i} + \mathbf{j} + \mathbf{k}$ and $\mathbf{c} = \mathbf{j} + 2\mathbf{k}$. Find unit vector in the op $\mathbf{a} + \mathbf{b} + \mathbf{c}$.	posite direction of
4.	Find the vector equation to the line passing through the points $i+j+k$, $i-j$	+k
5.	Find the value of $\cos^2 45^\circ - \sin^2 15^\circ$	
6.	Find the value of $\tan 10^0 + \tan 35^0 + \tan 10^0 \cdot \tan 35^0$	
7.	If $\cosh x = \frac{5}{2}$, find the values of i) $\cosh (2x)$ and ii) $\sinh (2x)$	
8.	Ina $\triangle ABC$, find $b\cos^2\frac{C}{2} + c\cos^2\frac{B}{2}$	
9.	Write the polar form of -1+i	

10. Find the angle between the vectors i+2j+3k and 3i-j+2k

SECTION B

SHORT ANSWER TYPE QUESTIONS.

Note: Answer any FIVE questions. Each question carries 4 marks.

- 11. If $\overline{a}, \overline{b}, \overline{c}$ are linearly independent vectors, then show that $\overline{a} 2\overline{b} + 3\overline{c}, -2\overline{a} + 3\overline{b} 4\overline{c}, -\overline{b} + 2\overline{c}$ are linearly dependent
- 12. Prove that the angle between any two diagonals of a cube is given by $\cos^{-1}\frac{1}{3}$.
- 13. If $\tan \theta = \frac{b}{a}$, then prove that $a \cos 2\theta + b \sin 2\theta = a$

5X4 =20

14. Solve the $\sin x + \sqrt{3}\cos x = \sqrt{2}$

15. Prove that
$$Sin^{-1}\frac{4}{5} + 2Tan^{-1}\frac{1}{3} = \frac{\pi}{2}$$

16. In
$$\triangle ABC$$
, prove that $\cot A + \cot B + \cot C = \frac{a^2 + b^2 + c^2}{4\Delta}$

17. Show that $8\sin^4\theta = \cos 4\theta - 4\cos 2\theta + 3$

SECTION C

LONG ANSWER TYPE QUESTIONS.

 $5 \times 7 = 35$

Note: Answer any Five of the following. Each question carries 7 marks.

18. If $f: A \to B$, $g: B \to C$ be bijections. Then prove that $(gof)^{-1} = f^{-1}og^{-1}$.

19. Prove by induction
$$a + (a+d) + (a+2d) + \dots \text{ to } n \text{ terms} = \frac{n}{2} [2a + (n-1)d]$$

- 20. Find the cartesian equation of the plane passing through the points (2, 3, 1), (4, 5, 2), and (3, 6, 5).
- 21. In triangle ABC, prove that $\cos\frac{A}{2} + \cos\frac{B}{2} + \cos\frac{C}{2} = 4\cos\frac{\pi A}{4}\cos\frac{\pi B}{4}\cos\frac{\pi C}{4}$
- 22. If P_1, P_2, P_3 are altitudes drawn from vertices A,B,C to the opposite sides of a triangle respectively, then show that

(i)
$$\frac{1}{P_1} + \frac{1}{P_2} + \frac{1}{P_3} = \frac{1}{r}$$
 (ii) $P_1 P_2 P_3 = \frac{(abc)^2}{8R^3}$

- 23. On a tower AB of height h, there is a flag staff BC. At a point d meters away from the foot of the tower, AB and BC are making equal angles. Show that the height of the flag staff if $h\left(\frac{d^2 + h^2}{d^2 h^2}\right)$ meters.
- 24. If n is an integer then show that $(1 + \cos \theta + i \sin \theta)^n + (1 + \cos \theta i \sin \theta)^n = 2^{n+1} \cos^n \left(\frac{\theta}{2}\right) \cos\left(\frac{n\theta}{2}\right)$