\mathbf{RR}

Set No. 2

III B.Tech I Semester Examinations, May 2011 FINITE ELEMENT METHODS Mechatronics

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Explain the significance of node numbering and element numbering during the discretization process.
 - (b) Explain the natural and geometric boundary conditions. [8+8]
- 2. Consider the two bar truss structure shown in the figure 5. The elements properties are $E_1 = 20 \times 10^{11} \text{ N/m}^2$; $E_2 = 10 \times 10^{11} \text{ N/m}^2$; $A_1 = 100 \text{ mm}^2$; $A_2 = 200 \text{ mm}^2$. Calculate the displacement at node 2 and stresses in the elements 1 and 2. [16]

Figure 5

- 3. A Uniform steel fin of length 25 cm, with a rectangular section 5 cm X 2.5 cm. If the heat transfer takes place by convection from all the sides while the root of the fin is maintained at 300^oC, determine the temperature distribution in the fin. Assume k = 25 W/m K, $h = 250 \text{ W/m}^2 \text{ K}$ and $T = 25^{\circ}\text{C}$. [16]
- 4. (a) From first principles, derive the general equation for elemental mass matrix?
 - (b) Derive the elemental mass matrix for 2-D triangular element? [8+8]
- 5. (a) What are the limitations of NASTRAN in stress analysis?
 - (b) What are the drawbacks of ANSYS in modeling? [8+8]
- 6. Calculate the deflection at the center of the fixed beam as shown in the figure 6. $E = 220 \text{ GPa}, I_1 = 1000 \text{ mm}^4, I_2 = 2000 \text{ mm}^4$ [16]

Set No. 2

Figure 6

- 7. An elastic bar is having a uniform cross sectional of area 'A' mm² and length 'L' mm. It is fixed at one end and other end is allowed to move along the axis of the elastic bar. A force 'F' KN is acting at the free end and the Youngs Modulus is 'E' N/mm². Calculate the displacement at the free end. [16]
- 8. The nodal coordinates of a four noded quadrilateral element are given below: $X_i = 1, Y_i = 1, X_j = 5, Y_j = 1, X_k = 6, Y_k = 6, X_l = 4, Y_l = 1.$ The element displacement vector u is given as $[u] = [0, 0, 0.20, 0, 0.15, 0.10, 0, 0.05]^T$ Find
 - (a) The x, y coordinates of a point P whose location in the master elements is given by $\xi = 0.5$, $\eta = 0.5$. and
 - (b) The u, v displacements of the point P. [8+8]

 \mathbf{RR}

Set No. 4

III B.Tech I Semester Examinations, May 2011 FINITE ELEMENT METHODS Mechatronics

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

1. Calculate the deflection at the center of the fixed beam as shown in the figure 6. $E = 220 \text{ GPa}, I_1 = 1000 \text{ mm}^4, I_2 = 2000 \text{ mm}^4$ [16]

Figure 6

- 2. A Uniform steel fin of length 25 cm, with a rectangular section 5 cm X 2.5 cm. If the heat transfer takes place by convection from all the sides while the root of the fin is maintained at 300^oC, determine the temperature distribution in the fin. Assume k = 25 W/m K, $h = 250 \text{ W/m}^2 \text{ K}$ and $T = 25^{\circ}\text{C}$. [16]
- 3. (a) What are the limitations of NASTRAN in stress analysis?
 - (b) What are the drawbacks of ANSYS in modeling? [8+8]
- 4. (a) From first principles, derive the general equation for elemental mass matrix?(b) Derive the elemental mass matrix for 2-D triangular element? [8+8]
- 5. The nodal coordinates of a four noded quadrilateral element are given below: $X_i = 1, Y_i = 1, X_j = 5, Y_j = 1, X_k = 6, Y_k = 6, X_l = 4, Y_l = 1.$ The element displacement vector u is given as $[u] = [0, 0, 0.20, 0, 0.15, 0.10, 0, 0.05]^T$ Find
 - (a) The x, y coordinates of a point P whose location in the master elements is given by $\xi = 0.5$, $\eta = 0.5$. and
 - (b) The u, v displacements of the point P. [8+8]
- 6. (a) Explain the significance of node numbering and element numbering during the discretization process.
 - (b) Explain the natural and geometric boundary conditions. [8+8]
- 7. An elastic bar is having a uniform cross sectional of area 'A' mm² and length 'L' mm. It is fixed at one end and other end is allowed to move along the axis of the

$$|\mathbf{RR}|$$

Set No. 4

elastic bar. A force 'F' KN is acting at the free end and the Youngs Modulus is 'E' N/mm^2 . Calculate the displacement at the free end. [16]

8. Consider the two bar truss structure shown in the figure 5. The elements properties are $E_1 = 20 \times 10^{11} \text{ N/m}^2$; $E_2 = 10 \times 10^{11} \text{ N/m}^2$; $A_1 = 100 \text{ mm}^2$; $A_2 = 200 \text{ mm}^2$. Calculate the displacement at node 2 and stresses in the elements 1 and 2.

[16]

 \mathbf{RR}

Set No. 1

III B.Tech I Semester Examinations, May 2011 FINITE ELEMENT METHODS **Mechatronics**

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. A Uniform steel fin of length 25 cm, with a rectangular section 5 cm X 2.5 cm. If the heat transfer takes place by convection from all the sides while the root of the fin is maintained at 300° C, determine the temperature distribution in the fin. Assume k = 25 W/m K, $h = 250 \text{ W/m}^2 \text{ K}$ and $T = 25^{\circ}\text{C}$. [16]
- 2. The nodal coordinates of a four noded quadrilateral element are given below: $X_i = 1, Y_i = 1, X_j = 5, Y_j = 1, X_k = 6, Y_k = 6, X_l = 4, Y_l = 1.$ The element displacement vector **u** is given as $[u] = [0, 0, 0.20, 0, 0.15, 0.10, 0, 0.05]^T$ Find
 - (a) The x, y coordinates of a point P whose location in the master elements is given by $\xi = 0.5$, $\eta = 0.5$. and
 - (b) The u, v displacements of the point P. [8+8]
- 3. An elastic bar is having a uniform cross sectional of area 'A' mm² and length 'L' mm. It is fixed at one end and other end is allowed to move along the axis of the elastic bar. A force 'F' KN is acting at the free end and the Youngs Modulus is 'E' N/mm^2 . Calculate the displacement at the free end. [16]
- 4. Calculate the deflection at the center of the fixed beam as shown in the figure 6. $E = 220 \text{ GPa}, I_1 = 1000 \text{ mm}^4, I_2 = 2000 \text{ mm}^4$ [16]

Figure 6

- 5.(a) Explain the significance of node numbering and element numbering during the discretization process.
 - (b) Explain the natural and geometric boundary conditions. [8+8]
- 6. (a) What are the limitations of NASTRAN in stress analysis?
 - (b) What are the drawbacks of ANSYS in modeling? [8+8]

$$\mathbf{RR}$$

Set No. 1

7. Consider the two bar truss structure shown in the figure 5. The elements properties are $E_1 = 20 \times 10^{11} \text{ N/m}^2$; $E_2 = 10 \times 10^{11} \text{ N/m}^2$; $A_1 = 100 \text{ mm}^2$; $A_2 = 200 \text{ mm}^2$. Calculate the displacement at node 2 and stresses in the elements 1 and 2. [16]

Figure 5

- 8. (a) From first principles, derive the general equation for elemental mass matrix?
 - (b) Derive the elemental mass matrix for 2-D triangular element? [8+8]

 \mathbf{RR}

Set No. 3

III B.Tech I Semester Examinations, May 2011 FINITE ELEMENT METHODS **Mechatronics**

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) What are the limitations of NASTRAN in stress analysis?
 - (b) What are the drawbacks of ANSYS in modeling? [8+8]
- 2. A Uniform steel fin of length 25 cm, with a rectangular section 5 cm X 2.5 cm. If the heat transfer takes place by convection from all the sides while the root of the fin is maintained at 300° C, determine the temperature distribution in the fin. Assume k = 25 W/m K, $h = 250 \text{ W/m}^2 \text{ K}$ and $T = 25^{\circ}\text{C}$. [16]
- 3. (a) Explain the significance of node numbering and element numbering during the discretization process.
 - (b) Explain the natural and geometric boundary conditions. [8+8]
- 4. The nodal coordinates of a four noded quadrilateral element are given below: $X_i = 1, Y_i = 1, X_j = 5, Y_j = 1, X_k = 6, Y_k = 6, X_l = 4, Y_l = 1.$ The element displacement vector u is given as $[u] = [0, 0, 0.20, 0, 0.15, 0.10, 0, 0.05]^T$ Find
 - (a) The x, y coordinates of a point P whose location in the master elements is given by $\xi = 0.5$, $\eta = 0.5$. and
 - (b) The u, v displacements of the point P. [8+8]
- 5. Consider the two bar truss structure shown in the figure 5. The elements properties are $E_1 = 20 \times 10^{11} \text{ N/m}^2$; $E_2 = 10 \times 10^{11} \text{ N/m}^2$; $A_1 = 100 \text{ mm}^2$; $A_2 = 200 \text{ mm}^2$. Calculate the displacement at node 2 and stresses in the elements 1 and 2. [16]

Figure 5

 \mathbf{RR}

Set No. 3

6. Calculate the deflection at the center of the fixed beam as shown in the figure 6. $E = 220 \text{ GPa}, I_1 = 1000 \text{ mm}^4, I_2 = 2000 \text{ mm}^4$ [16]

Figure 6

- 7. An elastic bar is having a uniform cross sectional of area 'A' mm^2 and length 'L' mm. It is fixed at one end and other end is allowed to move along the axis of the elastic bar. A force 'F' KN is acting at the free end and the Youngs Modulus is 'E' N/mm^2 . Calculate the displacement at the free end. [16]
- 8. (a) From first principles, derive the general equation for elemental mass matrix?(b) Derive the elemental mass matrix for 2-D triangular element? [8+8]