I B.Tech Examinations, June 2011 MATHEMATICAL METHODS

Common to BME, IT, ICE, E.COMP.E, ETM, EIE, CSE, ECE, EEE
Time: 3 hours

Max Marks: 75

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Derive the normal equation to fit the parabola $y=a+bx+cx^2$.
 - (b) By the method of least square, find the straight line that best fits the following data:

- 2. (a) Find the Fourier Series to represent the function $f(x) = |\sin x|$ in $-\Pi < x < \Pi$
 - (b) Find the Fourier Series for the function f(x) is given by

$$f(x) = \begin{cases} -\frac{1}{2}(\Pi + x) & \text{for } -\Pi < x \le 0\\ \frac{1}{2}(\Pi - x) & \text{for } 0 \le x < \Pi \end{cases}$$
 [7+8]

- 3. Find the eigen values and the corresponding eigen vectors of $\begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$. [15]
- 4. (a) Given $\frac{dy}{dx}$ =xy and y(0)=1 find y(0.1) using Euler's method.
 - (b) solve by Euler's method $\frac{dy}{dx} = \frac{2y}{x}$ given y(1)=2 and find y(2). [8+7]
- 5. (a) Solve $\frac{x^2}{p} + \frac{y^2}{q} = z$.

(b) Solve
$$x^2p^2 + xpq = z^2$$
. [7+8]

- 6. Reduce the quadratic form to the canonical form $6x^2 + 3y^2 + 3z^2$ 4xy + 4zx- 2yz. [15]
- 7. (a) Reduce the Matrix A to its normal formWhere A= $\begin{bmatrix} 1 & 2 & -2 & 3 \\ 2 & 5 & -4 & 6 \\ -1 & -3 & 2 & -2 \\ 2 & 4 & -1 & 6 \end{bmatrix}$ and hence find the rank.
 - (b) Find whether the following system of equations are consistent. If so solve them. [8+7]
- 8. (a) Establish the formula $x_{i+1} = \frac{1}{2} \left(x_i + \frac{N}{x_i} \right)$ and hence compute the value of upto four decimal places.
 - (b) Find y(25) given that y(20) = 24, y(24) = 32, y(28) = 35, y(32) = 40 using Gauss forward difference formula. [8+7]

R09

Set No. 4

Code No: 09A1BS04

I B.Tech Examinations, June 2011 MATHEMATICAL METHODS

Common to BME, IT, ICE, E.COMP.E, ETM, EIE, CSE, ECE, EEE
Time: 3 hours

Max Marks: 75

Answer any FIVE Questions All Questions carry equal marks

- 1. Find the eigen values and the corresponding eigen vectors of $\begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$. [15]
- 2. Reduce the quadratic form to the canonical form $3x^2$ - $3y^2$ - $5z^2$ -2xy-6yz-6xz.[15]
- 3. (a) From the following table, find the value of x for which y is maximum and find this value of y.

	X	1.2	1.3	1.4	1.5	1.6
ĺ	У	0.9320	0.9636	0.9855	0.9975	0.9996

(b) From the following table find x, correct to four decimal places for which y is minimum and find this value of y.

				v
X	0.60	0.65	0.70	0.75
у	0.6221	0.6155	0.6138	0.6170

- 4. (a) Solve px+qy=pq.
 - (b) Solve $z^2 = pqxy$. [8+7]
- 5. Find y(0.1) and y(0.2) using Euler's modified formula given that $\frac{dy}{dx} = x^2$ -y and y(0)=1. [15]
- 6. If f(x) = x for $0 < x < \frac{\Pi}{2}$ = $\Pi - x$ for $\frac{\Pi}{2} < x < \Pi$. then prove that
 - (a) $f(x) = \frac{4}{\Pi} [\sin x \frac{1}{3^2} \sin 3x + \frac{1}{5^2} \sin 5x --].$ (b) $f(x) = \frac{\Pi}{4} - \frac{2}{\Pi} [\frac{1}{1^2} \cos 2x + \frac{1}{3^2} \cos 6x + \frac{1}{5^2} \cos 10x + --].$ [8+7]
- 7. (a) Find a real root of the equation, $\log x = \cos x$ using regula falsi method.
 - (b) Given that f(20) = 24, f(24) = 32, f(28) = 35, f(32) = 40, find f(25) using Gauss forward interpolation formula. [7+8]
- 8. a) Find the Value of k it the Rank of Matrix A is 2 were $A = \begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & k & 0 \end{bmatrix}$
 - (b) Determine whether the following equations will have a solution, if so solve them. $x_1 + 2x_2 + x_3 = 2$, $3x_1 + x_2 2x_3 = 1$, $4x_1 3x_2 x_3 = 3$, $2x_1 + 4x_2 + 2x_3 = 4$. [7+8]

I B.Tech Examinations, June 2011 MATHEMATICAL METHODS

Common to BME, IT, ICE, E.COMP.E, ETM, EIE, CSE, ECE, EEE
Time: 3 hours

Max Marks: 75

Answer any FIVE Questions All Questions carry equal marks

- 1. Reduce the quadratic form to the canonical form $2x^2 + 5y^2 + 3z^2 + 4xy$. [15]
- 2. (a) Find the Values of Rank of the Matrix, by reducing it to the normal form.

 $\left[\begin{array}{ccccc}
1 & 2 & 1 & 2 \\
1 & 3 & 2 & 2 \\
2 & 4 & 3 & 4 \\
3 & 7 & 5 & 6
\end{array}\right]$

- (b) Find the valves of p and q so that the equations 2x + 3y + 5z = 9, 7x + 3y + 2z = 8, 2x+3y + pz = q have
 - i. No solution
 - ii. Unique solution
 - iii. An infinite number of solutions.

[7+8]

- 3. Find y(0.1), z(0.1) given $\frac{dy}{dx}$ =z-x, $\frac{dz}{dx}$ =x+y and y(0)=1, z(0)=1 by using taylor's series method. [15]
- 4. (a) Express $f(x)=x^3$ as Fourier sine series in $(0,\Pi)$.
 - (b) find the Fourier sine series of e^{ax} in $(0,\Pi)$.

[7+8]

- 5. (a) Derive a formula to find the cube root of N using Newton Raphson method hence find the cube root of 15.
 - (b) Find the interpolation polynomial for x, 2.4, 3.2, 4.0, 4.8, 5.6, f(x) = 22, 17.8, 14.2, 38.3, 51.7 using Newton's forward interpolation formula. [8+7]
- 6. (a) Prove that if the eigen values of a nonsingular square matrix are $\lambda_1, \lambda_2, \lambda_3, \ldots, \lambda_n$, then the eigen values of A KI are $\lambda_1 K, \lambda_2 K, \lambda_3 K, \ldots, \lambda_n K$.
 - (b) Find the eigen values and the corresponding eigen vectors of $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$. $\begin{bmatrix} 6+9 \end{bmatrix}$
- 7. (a) Solve $z(p^2 q^2) = x y$.
 - (b) Solve $p^2 z^2 \sin^2 x + q^2 z^2 \cos^2 y = 1$. [7+8]
- 8. (a) Use the trapezoidal rule with n=4 to estimate $\int_{0}^{1} \frac{dx}{1+x^2}$ correct to four decimal places.

Code No: 09A1BS04

R09

Set No. 1

(b) Evaluate $\int_0^{\pi} \left(\frac{\sin x}{x}\right) dx$ by using

i. Trapezoidal rule.

ii. Simpson's $\frac{1}{3}$ rule taking n = 6.

[8+7]

R09

Code No: 09A1BS04

Set No. 3

[15]

I B.Tech Examinations, June 2011 MATHEMATICAL METHODS

Common to BME, IT, ICE, E.COMP.E, ETM, EIE, CSE, ECE, EEE Time: 3 hours Max Marks: 75

Answer any FIVE Questions All Questions carry equal marks

1. By the method of least squares, fit a second parabola $y=a+bx+cx^2$ to the following data

uau	.aua.						
X	2	4	6	8	10		
V	3.07	12.85	31.47	57.38	91.29		

- 2. (a) Find a real root of the equation $e^x Sinx = 1$, using regula falsi method.
 - (b) Find f(22), from the following data using Newton's Backward formula.

X	20	25	30	35	40	45	. [8+7]
y	354	332	291	260	231	204	. [0+1]

- (a) $f(x)=x-\Pi$ as Fourier series in the interval $-\Pi < x < \Pi$.
 - (b) Find the fourier series to represent $f(x)=x^2$ in $(0,2\Pi)$.
- (a) Find the Rank of the Matrix ,by reducing it to the normal form. $\begin{bmatrix} 1 & 2 & -2 & 3 \\ 2 & 5 & -4 & 6 \\ -1 & -3 & 2 & -2 \\ 2 & 4 & 1 & 6 \end{bmatrix}$
 - (b) Find whether the following system of equations are consistent. If so solve them. x+2y-z=3, 3x-y+2z=-1, 2x-2y+3z=2, x-y+z=-1.
- 5. Find y(0.5), y(1) and y(1.5) given that $\frac{dy}{dx}$ =4-2x and y(0)=2 with h=0.5 using modified Euler's method.
- 6. Verify Cayley Hamilton theorem and find the inverse of $\begin{bmatrix} 8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$. [15]
- 7. (a) Solve $p x^2 = q + y^2$.
 - (b) Solve $q^2 p = y x$.
 - (c) Solve $q = px + p^2$. [5+5+5]
- 8. Compute the full SVD for the following matrix $\begin{bmatrix} 2 & 2 & 0 \\ 2 & 5 & 0 \\ 0 & 0 & 3 \end{bmatrix}$. [15]