MODEL QUESTION PAPER

MATHEMATICS PAPERI(A)
(Algebra, VecrorAlgebra and Trigonometry) (English Version)

Time: 3 Hrs
Max. Marks. 75
Note : Question paper consists of 'Three’ Sections A, B and C.

SECTION - A

I. Very short answer questions $10 \times 2=20$ Marks (Attempt all questions) (each question carries 'Two' marks)

1. Find the domain of the real valued functions $f(x)=\sqrt{9-x^{2}}$

02 In $\triangle A B C, D$ is the mid point of $B C$. Express $\overline{A B}+\overline{A C}$ in terms of $\overline{A D}$
03. Find the vector equation of the line through the points $2 \vec{i}+\vec{j}+3 \vec{k}$ and $-4 \vec{i}+3 \vec{j}-\vec{k}$
04. If $\vec{a}=\vec{i}+2 \vec{j}+3 \vec{k}$ and $\vec{b}=3 \vec{i}-\vec{j}+2 \vec{k}$, then find the angle between $(2 \vec{a}+\vec{b})$ and $(\vec{a}+2 \vec{b})$
05. Sketch the graph of $\sin x$ in $(0,2 \pi)$
06. Find the value of $\cos ^{2} 45^{\circ}-\sin ^{2} 15^{\circ}$
07. Show that $\cos h(3 x)=4 \cos ^{3} X-3 \cos h x$.
08. If $c^{2}=a^{2}+b^{2}$, write the value of $4 s(s-a)(s-b)(s-c)$ in terms of a and b.
09. Simplify $\frac{(\operatorname{cosq}-\mathrm{isinq})^{7}}{(\sin 2 \theta-\mathrm{i} \operatorname{Cos} 2 \theta)^{4}}$
10. Expand $\cos 4 \theta$ in powers of $\cos \theta$

SECTION - B

II. Short answer questions. Attempt five questions $5 \times 4=20$ marks
11. $f: A \rightarrow B, g: B \rightarrow C$;
$f=\{(1, a),(2, c),(4, d),(3, d)\}$
and $g^{-1}=\{(2, a),(4, b),(1, c),(3, d)\}$
then compute (gof) ${ }^{-1}$ and $\mathrm{f}^{-1} \mathrm{og}^{-1}$.
12. Find the cube root of $37-30 \sqrt{ } 3$.
13. If $x=1+\log _{a} b c, y=1+\log _{b} c a$ and $z=1+\log _{c} a b$, then show that $x y z$ $=x y+y z+z x$.
14. By vector method, prove that the diagonals of a parallelogram bisect each other.
15. Find the area:of the triangle formed with the points $A(1,2,3), B(2,3$, $1)$ and $C(3,1,2)$ by vector method.
16. Find the solution set of the equation $1+\sin 2 \theta=3 \sin \theta \cos \theta$
17. Show that $\operatorname{Sin}^{-1}\left(\frac{3}{5}\right)+\operatorname{Sin}^{-1}\left(\frac{8}{17}\right)=\operatorname{Sin}^{-1}\left(\frac{77}{85}\right)$

SECTION - C

III. Long answer questions : (Attempt 'FIVE' questions) $5 \times 7=35$ marks
18. If $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ are bijections,
then prove that gof : $\mathrm{A} \rightarrow \mathrm{C}$ is also bijection.
19. Using the principle of Mathematical induction show that
$1^{2}+\left(1^{2}+2^{2}\right)+\left(1^{2}+2^{2}+3^{2}\right)+\ldots$. upto n terms
$=\frac{\mathrm{n}(\mathrm{n}+1)^{2}(\mathrm{n}+2)}{12}$
20. For any vector \vec{a}, \vec{b}; and \vec{c},
prove that $(\vec{a} \times \vec{b}) \times \vec{c}=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{b} \cdot \vec{c}) \vec{a}$
21. If $A+B+C=180^{\circ}$, then show that
$\sin 2 A-\sin 2 B+\sin 2 C=4 \cos A \sin B \cos C$
22. In $\triangle \mathrm{ABC}$, show that
$\frac{r_{1}}{b c}+\frac{r_{2}}{c a}+\frac{r_{3}}{a b}=\frac{1}{r}-\frac{1}{2 R}$
23. One end of the ladder is incontact 'with a wall and another end is in contact with the level ground making an angle ' α '. When the foot of the ladder is moved to a distance ' a ' cms, the end in contact with the wall slides through ' b ' cms. and the angle made by the ladder with the level ground is now ' β ', show that
$a=b \tan \left\lvert\,\left(\frac{\alpha+\beta)}{2}\right)\right.$
24. Reduce the complex numbers $3+4 \mathrm{i}$,
$\frac{3}{4}(7+\mathrm{i})(1+\mathrm{i}), \frac{2(\mathrm{i}-18)}{(1+\mathrm{i})^{2}} \frac{5(\mathrm{i}-3)}{1+\mathrm{i}} \quad$ to $\mathrm{x}+\mathrm{iy}$ form. Show that the four points represented by these complex numbers form a square in the argand plane.

MODEL QUESTION PAPER

MATHEMATICS PAPER - I (B)

Calculus and Co-ordinate Gemetry)

English Version

Time: 3 Hours

Max. Marks. 75
Note: Question paper consists of three sections A, B and C.
Section - A
(Very short answer type questions)
Attempt all questions :
$10 \times 2=20$ marks
Each question carries two marks.,

1. Write the condition that the equation $a x+b y+c=0$ represents a non-vertical straight line. Also write its slope.
2. Transform the equation $4 x-3 y+12=0$ into slope-intercept form and intercept form of a straight line.
3. Find the ratio in which the point $C(6,-17,-4)$ divides the line segment joining the points $A(2,3,4)$ and $B(3,-2,2)$
4. Evaluate $\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{3 \mathrm{x}-1}{\sqrt{l+\mathrm{x}}-1)}$
5. Evaluate $\operatorname{Lt}_{x \rightarrow \infty}(\sqrt{x+1}-\sqrt{x})$
6. Find the constant ' a ' so that the function f given by
$f(x)=\sin x$ if $x \leqslant 0$
$=x^{2}+a$ if $0<n<1$ is continous at $x=0$
7. Find the derivative of $\log _{10} x$ w.r.t x
8. IfZ $=e^{a x}$ sinby then find $Z_{n y}$.
9. If $y=x^{2}+3 x+6, x=10, \Delta x=0.01$, then find Δy and $d y$.
10. Find the interval in which $f(x)=x^{3}-3 x^{2}$ is decreasing.

Section - B
(Short answer type questions)
Attempt any five questions. Each question carries Four marks
$5 \times 4=20$ marks
11. Find the equation of locus of a point, the sum of whose distances from $(0,2)$ and $(0,-2)$ is 6 units
12. Show that the axes are to be rotated through an angle of
$\frac{1}{2} \operatorname{Tan}^{-1}\left(\frac{2 \mathrm{~h}}{\mathrm{a}-\mathrm{b}}\right)$ so as to remove the $x y$ term from the equation $a x^{r}+2 h x y+b y^{r}=0$ If $a \neq b$ and through the angle $\frac{\pi}{4}$, if $a=b$
13. Show that the origin is within the triangle whose angular points are $(2,1),(3,-2)$ and $(-4,1)$
14. Show that the line joining the points $A(+6,-7,0)$ and $B C(16,-19,-4)$ intersects the line joining the points $P(0,3,-6)$ and $Q(2,-5,10)$ at the point (1,-1,2)
15. Find the derivative of $\tan 2 x$ from the first principles
16. A point P is moving with uniform velocity ' V ' along a straight line $A B . \theta$ is a point on the perpendicular to $A B$ at A and at a distance ' l ' from it. Show that the angular velocity of P about θ is
17. State and prove the Eulers theorem on homogeneous functions.

SECTION-C

$$
5 \times 7=35 \text { marks }
$$

18. Find the orthocentre of the triangle whose vertices are (5,-2), (-1,2) and (1,4)
19. Show that the area of the triangle formed by the lines
$a x^{2}+2 \gamma x y+b y^{2}=0$ and $l x+m y+n=0$ is $\frac{n^{2} \sqrt{h^{2}-a b}}{a m^{2}-2 \gamma \ln +b l^{2}}$
20. Find the angle between the lines joining the origin to the points of intersection of the curve
$x^{2}+2 x y+y^{2}+2 x+2 y-5=0$ and the line $3 x-y+1=0$
21. If a ray makes angle α, β, γ, and δ with the four diagonals of a cube, show that
$\cos ^{2} \alpha+\cos ^{2} \beta \cos ^{2} \gamma+\cos ^{2} \delta=\frac{4}{3}$
22. If $x^{\log y}=\log x$ then prove that $\frac{d y}{d x}=\frac{y}{x} \frac{(1-\log x \log y)}{(\log x)^{2}}$
23. Show that the semi-vertical angle of the right circular cone of a maximum volume and of given slant height is $\operatorname{Tan}^{-1} \sqrt{2}$
24. If the tangent at any point on the curve $x^{2 / 3}+\mathrm{y}^{2 / 3}=\mathrm{a}^{2 / 3}$
intersects the co-ordinate axis in A, B, then show that the length $A B$ is constant.
