Max Marks: 80

I B.Tech Regular Examinations, Apr/May 2007 APPLIED PHYSICS

(Common to Electrical & Electronic Engineering, Electronics &
Communication Engineering, Computer Science & Engineering, Electronics &
& Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics & Control Engineering, Computer Science &
Systems Engineering, Electronics & Telematics, Electronics & Computer Engineering and Instrumentation & Control Engineering)

Time: 3 hours

Answer any FIVE Questions All Questions carry equal marks $\star \star \star \star \star$

- 1. (a) Show that FCC is the most closely packed of the three cubic structures by working out the packing factors. [10]
 - (b) Describe the structure of NaCl. [6]
- 2. (a) Draw the (112) and (120) planes, and the [112] and [120] directions of a simple cubic crystal. [4]
 - (b) Derive an expression for the inter-planar spacing in the case of a cubic structure. [8]
 - (c) Calculate the glancing angle at (110) plane of a cubic crystal having axial length 0.26 nm corresponding to the second order diffraction maximum for the X-rays of wavelength 0.065 nm.
- 3. (a) What is Frenkel defect? Explain.
 - (b) Derive an expression for the concentration of Frenkel defects present in a crystal at any temperature. [10]
- 4. (a) Explain the origin of energy bands in solids.

[6]

[6]

- (b) Assuming the electron lattice interaction to be responsible for scattering of conduction electrons in a metal, obtain an expression for conductivity in terms of relaxation time and explain any three draw backs of classical theory of free electrons.
- (c) Find the temperature at which there is 1% probability of a state with an energy 0.5 eV above Fermi energy. [4]
- 5. (a) Explain the polarization mechanism in dielectric materials. [8]
 - (b) What are the important requirements of good insulating materials? [4]
 - (c) A parallel plate capacitor of area 650 m m^2 and a plate separation of 4 mm has a charge of 2 × 10⁻¹⁰ C on it. When a material of dielectric constant 3.5 is introduced between the plates, what is the resultant voltage across the capacitor? [4]

Set No. 1

6.	(a)	Distinguish between metals, semiconductors and insulators.	[6]
	(b)	Explain the effect of temperature on resistivity of a semiconductor.	[4]
	(c)	Derive an expression for the number of electrons per unit volume in the co- duction band of an intrinsic semiconductor.	on- [6]
7.	(a)	What do you understand by population inversion? How it is achieved?	[6]
	(b)	Derive the relation between the probabilities of spontaneous emission a stimulated emission in terms of Einstein's coefficients.	nd 10]
8.	(a)	Define the relative refractive index difference of an optical fibre. Show how is related to numerical aperture.	' it [6]
	(b)	Draw the block diagram of an optical fibre communication system and explate the function of each block.	ain 10]

I B.Tech Regular Examinations, Apr/May 2007 APPLIED PHYSICS

(Common to Electrical & Electronic Engineering, Electronics & Communication Engineering, Computer Science & Engineering, Electronics & Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics & Control Engineering, Computer Science & Systems Engineering, Electronics & Telematics, Electronics & Computer Engineering and Instrumentation & Control Engineering) Max Marks: 80

Time: 3 hours

Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) Define crystal lattice, unit cell, lattice parameter and coordination number.[8]
 - (b) Consider a body centered cubic lattice of identical atoms having radius R. Compute
 - i. the number of atoms per unit cell
 - ii. the coordination number and
 - iii. the packing fraction. [8]

2. (a) What are Miller indices? Draw (111) and (110) planes in a cubic lattice. [6]

- (b) Explain Bragg's law of X-ray diffraction.
- (c) The Bragg's angle for reflection from the (111) plane in a FCC crystal is 19.2° for an X-ray wavelength of 1.54 A.U. Compute the cube edge of the unit cell. [4]
- 3. (a) Explain Schottky and Frenkel defects with the help of suitable figures. [10][6](b) Explain the significance of Burgers vector.
- 4. (a) How does the electrical resistance of a metal change with temperature? [4]
 - (b) Discuss the motion of an electron in a periodic lattice.
 - (c) Find the relaxation time of conduction electrons in a metal having resistivity $1.54 \times 10^{-8} \ \Omega$ -m, if the metal has 5.8×10^{28} conduction electrons per cubic meter. [4]
- (a) Obtain a relation between electronic polarization and electric susceptibility of 5. the dielectric medium. [6]
 - (b) What is dielectric breakdown? Explain briefly the various factors contributing to breakdown in dielectrics. [6]
 - (c) A parallel plate capacitor having a plate separation of 2×10^{-3} m across which a potential of 10 V is applied. Calculate the dielectric displacement, when a material of dielectric constant 6.0 is introduced between the plates. |4|
- 6. (a) Explain Meissner effect.

[6]

[6]

[8]

- (b) What is meant by isotopic effect? Explain with suitable example. [6]
- (c) A superconducting material has a critical temperature of 3.7 K, and a magnetic field of 0.0306 tesla at 0 K. Find the critical field at 2 K. [4]
- 7. (a) Explain the terms:
 - i. Absorption.
 - ii. Spontaneous emission.
 - iii. Stimulated emission.
 - iv. Pumping mechanism.
 - v. Population inversion.
 - vi. Optical cavity. [12]

(b) Mention the medical applications of lasers. [4]

- 8. (a) Explain the principle behind the functioning of an optical fibre. [4]
 - (b) Derive an expression for acceptance angle for an optical fibre. How it is related to numerical aperture? [8]
 - (c) An optical fibre has a numerical aperture of 0.20 and a cladding refractive index of 1.59. Find the acceptance angle for the fibre in water which has a refractive index of 1.33. [4]

Set No. 3

[8]

I B.Tech Regular Examinations, Apr/May 2007 APPLIED PHYSICS

(Common to Electrical & Electronic Engineering, Electronics & Communication Engineering, Computer Science & Engineering, Electronics & Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics & Control Engineering, Computer Science & Systems Engineering, Electronics & Telematics, Electronics & Computer Engineering and Instrumentation & Control Engineering) Max Marks: 80

Time: 3 hours

netism?

Answer any FIVE Questions All Questions carry equal marks

1. (a) Show that FCC is the most closely packed of the three cubic structures by working out the packing factors. [10](b) Describe the structure of NaCl. [6]2. (a) Explain Bragg's law of X-ray diffraction. [6](b) Describe Laue's method for determination of crystal structure. [6](c) A beam of X-rays is incident on a NaCl crystal with lattice spacing 0.282 nm. Calculate the wavelength of X-rays if the first order Bragg reflection takes place at a glancing angle of $8^{\circ}35'$. Also calculate the maximum order of diffraction possible. [4]3. (a) What is Frenkel defect? Explain. [6](b) Derive an expression for the concentration of Frenkel defects present in a crystal at any temperature. [10]4. (a) Explain the origin of energy bands in solids. [6](b) Assuming the electron - lattice interaction to be responsible for scattering of conduction electrons in a metal, obtain an expression for conductivity in terms of relaxation time and explain any three draw backs of classical theory of free electrons. [6](c) Find the temperature at which there is 1% probability of a state with an energy 0.5 eV above Fermi energy. [4]5.(a) What is ferromagnetism? What are the distinguishing features of ferromag-

(b) What are ferrites? Explain the magnetic properties of ferrites and mention their industrial applications. [8]

- 6. (a) Derive the continuity equation for electrons. [8]
 - (b) What physical law is manifested in the continuity equation. [4]

- Set No. 3
- (c) Find the diffusion coefficient of electrons in silicon at 300 K if μ is 0.19 $m^2/\text{V-S.}$ [4]
- 7. (a) What do you understand by population inversion? How it is achieved? [6]
 - (b) Derive the relation between the probabilities of spontaneous emission and stimulated emission in terms of Einstein's coefficients. [10]
- 8. (a) Define the relative refractive index difference of an optical fibre. Show how it is related to numerical aperture. [6]
 - (b) Draw the block diagram of an optical fibre communication system and explain the function of each block. [10]

. . .

I B.Tech Regular Examinations, Apr/May 2007 APPLIED PHYSICS

(Common to Electrical & Electronic Engineering, Electronics & Communication Engineering, Computer Science & Engineering, Electronics & Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics & Control Engineering, Computer Science & Systems Engineering, Electronics & Telematics, Electronics & Computer Engineering and Instrumentation & Control Engineering) Max Marks: 80

Time: 3 hours

Answer any FIVE Questions All Questions carry equal marks *****

..

1.	(a)	Explain the "Unit Cell" and "Lattice Parameters". What is a primitive ce and how does it differ from unit cell?	ell [6]
	(b)	Describe the crystal structure of CsCl. [[4]
	(c)	Chromium has BCC structure. Its atomic radius is 0.1249 nm. Calculate the free volume/unit cell.	he [6]
2.	(a)	What are Miller indices? Draw (111) and (110) planes in a cubic lattice. [[6]
	(b)	Explain Bragg's law of X-ray diffraction. [[6]
	(c)	The Bragg's angle for reflection from the (111) plane in a FCC crystal is 19.2 for an X-ray wavelength of 1.54 A.U. Compute the cube edge of the unit ce	
3.	(a)		ce [6]
	(b)	Describe an experiment to establish the wave nature of electrons.	[6]
	(c)	Explain the difference between a matter wave and an electromagnetic wave	[4]
4.	(a)	Explain the origin of energy bands in solids.	
			[6]
	(b)	Assuming the electron - lattice interaction to be responsible for scattering conduction electrons in a metal, obtain an expression for conductivity in term of relaxation time and explain any three draw backs of classical theory of freelectrons.	ns
	(c)	Find the temperature at which there is 1% probability of a state with a energy 0.5 eV above Fermi energy.	an [4]

- 5. (a) What is intrinsic break down in dielectric materials? [4]
 - (b) Explain electronic polarization in atoms and obtain an expression for electronic polarisability in terms of the radius of the atom. [8]

- (c) A parallel plate capacitor has an area of 100 cm^2 , with a separation of 1 cm and is charged to a potential of 100 V. Calculate the capacitance of the capacitor and the charge on the plates. [4]
- 6. Explain the following:
 - (a) Critical magnetic field of a superconductor as a function of temperature.
 - (b) Meissner effect.
 - (c) Cryotrons.
- 7. (a) Explain with a neat diagram
 - i. absorption
 - ii. spontaneous emission and
 - iii. stimulated emission of radiation. [8]
 - (b) What is population inversion? How it is achieved by optical pumping? [8]
- 8. (a) Describe the construction of a typical optical fibre and give the dimensions of the various parts. [4]
 - (b) Define the acceptance angle and numerical aperture. Obtain an expression for the numerical aperture of an optical fibre. [8]
 - (c) Calculate the numerical aperture and acceptance angle for an optical fibre with core and cladding refractive indices being 1.48 and 1.45 respectively. [4]

Set No. 4

[6+5+5]

e.