I B.Tech Regular Examinations, Apr/May 2007 MATHEMATICAL METHODS

(Common to Electrical & Electronic Engineering, Electronics & Communication Engineering, Computer Science & Engineering, Electronics & Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics & Control Engineering, Computer Science & Systems Engineering, Electronics & Telematics, Electronics & Computer Engineering and Instrumentation & Control Engineering) Max Marks: 80

Time: 3 hours

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Find a real root of xe^x -cosx=0 using Newton Raphson method
 - (b) Using Gauss backward difference formula find y(8) from the following table 510 1520 250 7 11 14 18 24 32 v

[8+8]

(a) Fit a parabole of the form $y=a+bx+cx^2$ to the following data. 2.

X			- Э	4	6	0	(
У	23	5.2	9.7	16.5	29.4	35.5	54.4

(b) The table below shows the temperature f(t) as a function of time

t	1	2	3	4	5	6	1
f(t)	81	75	80	83	78	70	60

Use Simpson's 1/3 method to estimate $\int_{1}^{t} f(t)dt$ [8+8]

3. Find y(.2) using picards method given that $\frac{dy}{dx} = xy, y(0)$ taking h=.1 [16]

(a) Prove that the following set of equations are consistent and solve them. 4.

$$3x + 3y + 2z = 1$$
$$x + 2y = 4$$
$$10y + 3z = -2$$
$$2x - 3y - z = 5$$

(b) Find an LU decomposition of the matrix A and solve the linear system AX=B. $\begin{bmatrix} -3 & 12 & -6 \\ 1 & -2 & 2 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -33 \\ 7 \\ -1 \end{bmatrix}$ [8+8]

5. Verify Cayley Hamilton theorem and hence find $A^{-1}, A = \begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}$ [16]

```
Set No. 1
```

- 6. (a) Prove that the eigen values of a real symmetric matrix are real
 - (b) Reduce the quadtatic form $7x^2+6y^2+5z^2-4xy-4yz$ to the canonical form [6+10]
- 7. (a) Find the half range cosine series for the function $f(x) = (x-1)^2$ in the interval 0 < x < 1 Hence show that $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$
 - (b) [10+6]
- 8. (a) Form the partial differential equation by eliminating the arbitrary functions from $z = xf_1(x+t) + f_2(x+t)$.
 - (b) Solve the partial differential equation $p^2x^4 + y^2zq = 2z^2$.
 - (c) Solve the difference equation $u_{n+1} + \frac{1}{4}u_n = (\frac{1}{4})^4, n \ge 0,$ $u(0)=0 \ u_1=1 \text{ using Z-Transforms}$ [5+5+6]

I B.Tech Regular Examinations, Apr/May 2007 MATHEMATICAL METHODS

(Common to Electrical & Electronic Engineering, Electronics & Communication Engineering, Computer Science & Engineering, Electronics & Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics & Control Engineering, Computer Science & Systems Engineering, Electronics & Telematics, Electronics & Computer Engineering and Instrumentation & Control Engineering) Max Marks: 80

Time: 3 hours

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Find a real root of the equation x^3 -x-11=0 by bisection method
 - (b) Construct difference table for the following data: [8+8]

001001	acco and	0101100 0	0.010 101	0110 1011			
X	0.1	0.3	0.5	0.7	0.9	1.1	1.3
F(x)	0.003	0.067	0.148	0.248	0.370	0.518	0.697
1 10	1 1 (0.0			1			- 10

And find F(0.6) using a cube that fits at x=0.3, 0.5, 0.7 and 0.9 using Newton's forward formula.

2. (a) Derive normal equations to fit the straight line y=a+bx

(b) Evaluate
$$\int_{0}^{2} e^{-x^{2}} dx$$
 using Simpson's rule. Taking h = 0.25. [8+8]

- 3. Given $y' = x + \sin y$, y(0) = 1 compute y(0.2) and y(.4) with h=0.2 using Euler's modified method [16]
- 4. (a) Find whether the following equations are consistent, if so solve them. x+y+2z = 4; 2x-y+3z = 9; 3x-y-z=2
 - (b) Find the rank of the matrix

$$\begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{bmatrix}$$
 by reducing it to the normal form. [8+8]

5. Diagomalize the matrix
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ -4 & 4 & 3 \end{bmatrix}$$
 and hence find A^4 . [16]

- 6. (a) Define the following:
 - i. Hermitian matrix
 - ii. Skew-Hermitain matrix
 - iii. Unitary matrix
 - iv. Orthogonal matrix.
 - (b) Show that the eigen values of an unitary matrix is of unit modulus. [8+8]

- Set No. 2
- 7. (a) Find the Fourier series to represent $f(x) = x^2 2$, when $-2 \le x \le 2$
 - (b) Show that the Fourier sine transform of $f(x) = \begin{cases} x & for \ 0 < x < 1 \\ 2-x & for \ 1 < x < 2 \\ 0 & for \ x > 2 \end{cases}$ is $2 \sin \frac{s(1-\cos s)}{s^2}$. [8+8]
- 8. (a) Form the partial differential equation by eliminating the arbitrary function from $z = yf(x^2 + z^2)$.
 - (b) Solve the partial differential equation $p\sqrt{x} + q\sqrt{y} = \sqrt{z}$
 - (c) Find $Z^{-1}\left[\frac{1}{(z-5)^3}\right]$ When |z| > 5. Determine the region of convergence. [5+5+6]

Max Marks: 80

I B.Tech Regular Examinations, Apr/May 2007 MATHEMATICAL METHODS

(Common to Electrical & Electronic Engineering, Electronics &
Communication Engineering, Computer Science & Engineering, Electronics & Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics & Control Engineering, Computer Science & Systems Engineering, Electronics & Telematics, Electronics & Computer Engineering and Instrumentation & Control Engineering)

Time: 3 hours

Answer any FIVE Questions All Questions carry equal marks $\star \star \star \star$

- 1. (a) Find a real root of $x+log x_{10}-2=0$ using Newton Raphson method
 - (b) If y_x is the value of y at x for which the fifth differences are constant and $y_1+y_7=-784$, $y_2+y_6=686$, $y_3+y_5=1088$, then find y_4 . [8+8]
- 2. (a) Fit a curve of the form $y=a+bx+cx^2$ for the following data.

· · ·								0
	X	10	15	20	25	30	35	
	У	35.3	32.4	29.2	26.1	23.2	20.5	
(b)	Eva	luate	$\int_{0}^{1} \frac{dx}{1+x} t$	aking	h= .25	ó using	cubic	splines. [8+8]

- 3. Use Runga Kutta fourth order method to evaluate y(.1) and y(.2), given that $\frac{dy}{dx} = x + y, y(0) = 1$ [16]
- 4. (a) Determine the values of λ for which the following set of equations may posses non-trivial solution and solve them in each case.

$$3x_1 + x_2 - \lambda x_3 = 0; \quad 4x_1 - 2x_2 - 3x_3 = 0; \quad 2\lambda x_1 + 4x_2 + \lambda x_3 = 0.$$

(b) Solve the following tridiagonal system $x_1+2x_2=7$, $x_1-3x_2-x_3=4$, $4x_2+3x_3=5$ by LU decomposition. [8+8]

5. Show that the matrix $A = \begin{bmatrix} 1 & -2 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & 2 \end{bmatrix}$ Satisfies its characteristic equation. Hence Find A^{-1} [16]

- 6. (a) Show that $A = \begin{pmatrix} a+ic & -b+id \\ b+id & a-ic \end{pmatrix}$ is unitary matrix if $a^2+b^2+c^2+d^2 = 1$.
 - (b) Find a matrix P which diagonalize the matrix associated with the quadratic from $3x^2 + 5y^2 + 3z^2 2yz + 2zx 2xy$. [8+8]

7. (a) Obtain the Fourier series for the function
$$f(x) = \begin{cases} \pi x, & 0 \le x \le 1 \\ \pi (2-x), & 1 \le x \le 2 \end{cases}$$

Set No. 3

- (b) Find the Fourier cosine transform of $5^{-2x} + 2e^{-5x}$. [10+6]
- 8. (a) Form the partial differential equation by eliminating the arbitrary constants log (az-1)=x+ay+b

(b) Solve the partial differential equation x (y - z) p + y (z - x) q = z (x - y)

(c) Using convolution theorem find $Z^{-1}\left[\frac{z^2}{(z-4)(z-5)}\right]$ [5+5+6]

Set No. 4

I B.Tech Regular Examinations, Apr/May 2007 MATHEMATICAL METHODS

(Common to Electrical & Electronic Engineering, Electronics & Communication Engineering, Computer Science & Engineering, Electronics & Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics & Control Engineering, Computer Science & Systems Engineering, Electronics & Telematics, Electronics & Computer Engineering and Instrumentation & Control Engineering) Max Marks: 80

Time: 3 hours

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Find a real root of $xe^x=2$ using Regula falsi method
 - (b) Find f(22) from the following table using Gauss forward formula

	20					
f(x)	354	332	291	260	231	204

2. (a) Fit a straight line for the form y=a+bx for the following data

х	0	5	10	15	20	25
у	12	15	17	22	24	30

(b) Evaluate $\int_{6}^{2.0} y \, dx$ using Trapezoidal rule

							1.8	
y	1.23	1.58	2.03	4.32	6.25	8.38	10.23	12.45

- 3. Find the solution of $\frac{dy}{dx} = x y$ at x=.4 subject to the condition y=1, at x=0 and h=.1 using Milne's method. Use Euler's modified method to evaluate y(.1), y(2) and y(.3). [16]
- 4. (a) Reduce the matrix A to its normal form.

Where $A = \begin{bmatrix} 0 & 1 & 2 & -2 \\ 4 & 0 & 2 & 6 \\ 2 & 1 & 3 & 1 \end{bmatrix}$ and hence find the rank

- (b) Show that the only real value of λ for which the following equations have non trivial solution is 6 and solve them, when $\lambda = 6$. $\mathbf{x} + 2\mathbf{y} + 3\mathbf{z} = \lambda \mathbf{x}; \ 3\mathbf{x} + \mathbf{y} + 2\mathbf{z} = \lambda \mathbf{y}; \ 2\mathbf{x} + 3\mathbf{y} + \mathbf{z} = \lambda \mathbf{z}.$ [8+8]
- 5. Verify that the sum of eigen values is equal to the trace of A for the matrix $\begin{bmatrix} 2 & 1 & 1 \\ 2 & 1 & 1 \end{bmatrix}$

$$A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$$
and find the corresponding eigen vectors. [16]

6. (a) Prove that every square matrix can be uniquely expresses as a sum of symmetric and skew symmetric matrices

(b) Find the nature of the quadtratic form index and signature. $10x^2+2y^2+5z^2-4xy-10xz+6yz$ [6+10]

Set No. 4

7. (a) Represent the following function by a Fourier sin series. $f(t) = \begin{cases} t, & 0 < t \le \frac{\pi}{2} \\ \frac{\pi}{2}, & \frac{\pi}{2} < t \le \pi \end{cases}$

(b) Using Fourier integral theorem prove that $e^{-ax} - e^{-bx} = \frac{2(b^2 - a^2)}{\pi} \int_{0}^{\infty} \frac{\lambda \sin \lambda x \, d\lambda}{(\lambda^2 + a^2) \, (\lambda^2 + b^2)}$ [8+8]

- 8. (a) Form the partial differential equation by eliminating the arbitrary constants $z=ax^3+by^3$
 - (b) Solve the partial differential equation $z(x-y) = px^2 qy^2$
 - (c) Solve the difference equation, using Z transforms $u_{n+2} 3u_{n+1} + 2u_n = 0$ given that $u_0 = 0$ $u_1 = 1$ [5+5+6]
