I B.Tech $\begin{gathered}\text { Supplimentary Examinations, Aug/Sep } 2007 \\ \text { MATHEMATICAL METHODS }\end{gathered}$
(Common to Electrical \& Electronic Engineering, Electronics \& Communication Engineering, Computer Science \& Engineering, Electronics \& Instrumentation Engineering, Bio-Medical Engineering, Information
Technology, Electronics \& Control Engineering, Computer Science \& Systems Engineering, Electronics \& Telematics, Electronics \& Computer Engineering and Instrumentation \& Control Engineering)
Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Find a real root of the equation $f(x)=x+\log x-2$ using Newton Raphson method
(b) Find $f(22)$ from the following data using Newton's Backward formula

x	20	25	30	35	40	45
y	354	332	291	260	231	204

2. (a) Fit acurve of the form $y=a e^{b x}$ from the following data.

x	1	2	3	4	5	6
y	1.6	4.5	13.8	40.2	125	300

(b) Evaluate $\int_{0}^{1} e^{-x^{2}}$ taking $\mathrm{h}=.2$ using
i. Simpson's $\frac{1}{3} r d$
ii. Trapenzoidal rule.
3. Given $\mathrm{y}^{\prime}=\mathrm{x}+\sin \mathrm{y}, \mathrm{y}(0)=1$ compute $\mathrm{y}(0.2)$ and $\mathrm{y}(.4)$ with $\mathrm{h}=0.2$ using Euler's modified method
4. (a) Determine the rank of the matrix.

$$
\mathrm{A}=\left[\begin{array}{cccc}
2 & -1 & 3 & 4 \\
0 & 3 & 4 & 1 \\
2 & 3 & 7 & 5 \\
2 & 5 & 11 & 6
\end{array}\right] \text { by reducing it to the normal form. }
$$

(b) Find whether the following equations are consistent, if so solve them.

$$
\begin{gathered}
x+2 y-z=3 \\
3 x-y+2 z=1 \\
2 x-2 y+3 z=2 \\
x-y+z=-1 .
\end{gathered}
$$

5. Diagonalize the matrix $\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$
6. (a) Show that every square matrix can be expressed uniquely as a sum of a symmetric and skew symmetric matrices.
(b) Determine a, b, c so that A is orthogonal where $\mathrm{A}=\left[\begin{array}{ccc}0 & 2 b & c \\ a & b & -c \\ a & -b & c\end{array}\right] \quad[8+8]$
7. (a) Find the half range cosine series for the function $f(x)=(x-1)^{2}$ in the interval $0<x<1$ Hence show that $\sum_{\mathrm{n}=1}^{\infty} \frac{1}{(2 \mathrm{n}-1)^{2}}=\frac{\pi^{2}}{8}$
(b) State and prove Fourier integral theorem.
8. (a) Form the partial differential equation by eliminating the arbitrary constants from $(x-a)^{2}+(y-b)^{2}+z^{2}=r^{2}$
(b) Solve the partial differential equation $z^{2}\left(p^{2}+q^{2}\right)=x^{2}+y^{2}$
(c) Find the Z - transform of $\sin \alpha k, \quad k \geq 0$

I B.Tech Supplimentary Examinations, Aug/Sep 2007 MATHEMATICAL METHODS
(Common to Electrical \& Electronic Engineering, Electronics \&
Communication Engineering, Computer Science \& Engineering, Electronics \& Instrumentation Engineering, Bio-Medical Engineering, Information
Technology, Electronics \& Control Engineering, Computer Science \&
Systems Engineering, Electronics \& Telematics, Electronics \& Computer Engineering and Instrumentation \& Control Engineering)
Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Find an iterative formula to find the cube root of a number using Newton's Raphson's method. Hence evaluate cube root of 15
(b) For $\mathrm{X}=20,25,32,49$ and $\operatorname{Cos}(\mathrm{x})=0.939,0.906,0.848,0.656$ find $\operatorname{Cos}(43)$ using Lagrange's formula.
2. Fit a parabola of the form $\mathrm{y}=\mathrm{a}+\mathrm{bx}+c x^{2}$

x	1.0	1.5	2.0	2.5	3.0	3.5	4.0
y	1.1	1.3	1.6	2.0	2.7	3.4	4.1

3. Find $y(.5), y(1)$ and $y(1.5)$, given that $y^{\prime}=4-2 x, y(0)=2$, with $h=0.5$ Using Modified Euler method
4. (a) Find the value of K such that the rank of the matrix is $3\left[\begin{array}{cccc}1 & 2 & -1 & 3 \\ 4 & 1 & 2 & 1 \\ 3 & -1 & 1 & 2 \\ -1 & 2 & 0 & K\end{array}\right]$
(b) Find whether the system of equations $x_{1}+2 x_{2}+x_{3}-2 x_{4}=6,2 x_{1}+3 x_{2}+$ $2 x_{3}-2 x_{4}=83 x_{1}+x_{2}+2 x_{3}-x_{4}=4,4 x_{1}+2 x_{2}+2 x_{3}-3 x_{4}=9$ is consistant, if so solve them.
5. Diagomalize the matrix $\mathrm{A}=\left[\begin{array}{ccc}8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1\end{array}\right]$
6. (a) Find a real symmetric matrix C of the quadratic form $Q=x_{1}^{2}+3 x_{2}^{2}+2 x_{3}^{2}+$ $2 x_{1} x_{2}+6 x_{2} x_{3}$ and find the index and signature.
(b) Find the orthogonal transformation which transforms the quadratic form $x_{1}^{2}+3 x_{2}^{2}+3 x_{3}^{2}-2 x_{2} x_{3}$ to canonical form.
7. (a) Obtain a Fourier expansion for $\sqrt{1-\cos x}$ in the interval $-\pi<x<\pi$..
(b) If $\mathrm{F}(\mathrm{s})$ is the complex Fourier transform of $\mathrm{f}(\mathrm{x})$, then prove that
$\mathrm{F}(\mathrm{f}(\mathrm{x}) \cos \mathrm{ax})=\frac{1}{2}[\mathrm{~F}(\mathrm{~s}+\mathrm{a})+\mathrm{F}(\mathrm{s}-\mathrm{a})]$
$\mathrm{F}[\mathrm{f}(\mathrm{x}-\mathrm{a})]=e^{i s a} \mathrm{~F}(\mathrm{~s})$.
$[10+6]$
8. (a) Form the partial differential equation by eliminating the arbitrary constants $\mathrm{z}=\mathrm{f}\left(x^{2}+y^{2}+z^{2}\right)$.
(b) Solve the partial differential equation $p^{2} x+q^{2} y=z$.
(c) Solve the difference equation, using Z-transforms $u_{n+2}-u_{n}=2^{n}$ where $u_{0}=$ $0, \quad u_{1}=1$.

I B.Tech Supplimentary Examinations, Aug/Sep 2007 MATHEMATICAL METHODS
(Common to Electrical \& Electronic Engineering, Electronics \&
Communication Engineering, Computer Science \& Engineering, Electronics \& Instrumentation Engineering, Bio-Medical Engineering, Information
Technology, Electronics \& Control Engineering, Computer Science \&
Systems Engineering, Electronics \& Telematics, Electronics \& Computer Engineering and Instrumentation \& Control Engineering)
Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Find a real root of $x^{4}-x-10=0$ using bisection method.
(b) Find $f(9)$ by Newton's Backward formula given that $f(2)=94.8 f(5)=87.9$, $\mathrm{f}(8)=81.3 \mathrm{f}(11)=75.1$.
2. (a) By the method of least squares fit a parabola of the form $y=a+b x+c x^{2}$ for the following data.

x	2	4	6	8	10
y	3.07	12.85	31.47	57.38	91.29

(b) Derive the formula to evaluate $\int_{a}^{b} y d x$ using trapezoidal rule.
(c) Use the trapezoidal rule with $\mathrm{n}=4$ to estimate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ Correct to four decimal places.

$$
[8+4+4]
$$

3. Find the solution of $\frac{d y}{d x}=\mathrm{x}-\mathrm{y}$ at $\mathrm{x}=0.1,0.2,0.3,0.4$ and 0.5 using modified Euler method. $\mathrm{y}(0)=1$
4. (a) Determine whether the following equations will have a non-trivial solution if so solve them.

$$
\begin{aligned}
3 x+4 y-z-6 \omega=0 ; & 2 x+3 y+2 z-3 \omega=0 \\
2 x+y-14 z-9 \omega=0 ; & x+3 y+13 z+3 \omega=0 .
\end{aligned}
$$

(b) Solve the tridiagonal system
$3 x_{1}-x_{2}=4$,
$2 x_{1}-x_{2}+x_{3}=6$,
$2 x_{2}+3 x_{3}+2 x_{4}=11$,
$x_{3}-2 x_{4}=-1$
by writing the coefficient matrix as a product of a lower triangular and upper triangular matrices.
5. Diagonalize the matrix $\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$
6. (a) Prove that every hermitian matrix can be written as $\mathrm{A}+\mathrm{iB}$ where A is real and Symmetric and B is real and Skew-Symmetric.
(b) Reduce the quadratic form $x_{1}^{2}+3 x_{2}^{2}+3 x_{3}^{2}-2 x_{2} x_{3}$ to a canonical form. [8+8]
7. (a) Write the Dirichlet?s conditions for the existence of Fourier series of a function $\mathrm{f}(\mathrm{x})$ in the interval $(\alpha, \alpha+2 \pi)$. Find the Fourier series representing $f(x)=$ $x, 0<x<2 \pi$
(b) Find the Fourier transform of $f(x)=\left\{\begin{array}{cc}1-x^{2} & \text { if }|x|<1 \\ 0 & \text { if }|x|>1\end{array}\right.$

Hence evaluate $\int_{0}^{\infty}\left[\frac{x \cos x-\sin x}{x^{2}}\right] \cos \frac{x}{2} d x$.
8. (a) Form the partial differential equation by eliminating the arbitrary constants $\log (a z-1)=x+a y+b$.
(b) Solve the partial differential equation $p x\left(y^{2}+z\right)-q y\left(x^{2}+z\right)=z\left(x^{2}-y^{2}\right)$.
(c) If $\mathrm{Z}\left(u_{n}\right)=\frac{2 z^{2}+5 z+14}{(z-1)^{4}}$, find u_{2} and u_{3}
$[5+6+5]$

I B.Tech $\begin{gathered}\text { Supplimentary Examinations, Aug/Sep } 2007 \\ \text { MATHEMATICAL METHODS }\end{gathered}$
(Common to Electrical \& Electronic Engineering, Electronics \&
Communication Engineering, Computer Science \& Engineering, Electronics \& Instrumentation Engineering, Bio-Medical Engineering, Information
Technology, Electronics \& Control Engineering, Computer Science \& Systems Engineering, Electronics \& Telematics, Electronics \& Computer Engineering and Instrumentation \& Control Engineering)
Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Find a real root of the equation $f(x)=x+\log x-2$ using Newton Raphson method
(b) Find $f(22)$ from the following data using Newton's Backward formula

x	20	25	30	35	40	45
y	354	332	291	260	231	204

2. Fit a parabola of the form $y=A_{1} e^{\lambda x}+A_{2} e^{\lambda 2 x}$ for the following data

x	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8
y	1.175	1.336	1.51	1.698	1.904	2.129	2.376	2.646	2.942

3. Find $\mathrm{ay}(.1), \mathrm{y}(.2)$ and $\mathrm{y}(.3)$ using Taylor's series method that $\frac{d y}{d x}=l-y, y(0)=0$
4. (a) Find whether the following equations are consistent, if so solve them.
$x+y+2 z=4 ; 2 x-y+3 z=9 ; 3 x-y-z=2$
(b) Find the rank of the matrix
$\left[\begin{array}{llll}1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5\end{array}\right]$ by reducing it to the normal form. $\quad[8+8]$
5. (a) Find the eigen values and the corresponding eigen vectors of the matrix. $\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$
(b) If A and B are n rowed square matrices and if A is invertible show that $A^{-1} \mathrm{~B}$ and $B A^{-1}$ have the same eigen values.
6. (a) Prove that every hermitian matrix can be written as $\mathrm{A}+\mathrm{iB}$ where A is real and Symmetric and B is real and Skew-Symmetric.
(b) Reduce the quadratic form $x_{1}^{2}+3 x_{2}^{2}+3 x_{3}^{2}-2 x_{2} x_{3}$ to a canonical form. [8+8]
7. (a) Find the Fourier series for $f(x)$; if $f(x)$ is defined in $-\pi<x<\pi$ as $f(x)=\left\{\begin{aligned}-\pi, & -\pi<x<0 \\ x, & 0<x<\pi\end{aligned}\right.$
Deduce that $\frac{\pi^{2}}{8}=\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+$
(b) Find a half range sine series for $\mathrm{f}(\mathrm{x})=\mathrm{ax}+\mathrm{b}$ in $0<x<1$
(c) Find Fourier cosine transform of $f(x)=\left\{\begin{array}{cc}\cos x & 0<x<a \\ 0 & x \geq a\end{array} \quad[6+5+5]\right.$
8. (a) Form the partial differential equation by eliminating the arbitrary constants a, b from $2 z=(x+a)^{1 / 2}+(y-a)^{1 / 2}+b$.
(b) Solve the partial differential equation., $z^{4} p^{2}+z^{4} q^{2}=x^{2} y^{2}$.
(c) Find $Z^{-1}\left[\frac{z}{z^{2}+11 z+24}\right]$.
