Set No. 1

I B.Tech Supplimentary Examinations, Aug/Sep 2008 APPLIED PHYSICS

(Common to Electrical & Electronic Engineering, Electronics & Communication Engineering, Computer Science & Engineering, Electronics & Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics & Control Engineering, Computer Science & Systems Engineering, Electronics & Telematics, Electronics & Computer Engineering and Instrumentation & Control Engineering)

Time: 3 hours

Max Marks: 80

[4]

[6]

Answer any FIVE Questions All Questions carry equal marks $\star \star \star \star \star$

1.	(a)	Define coordination number and packing factor of a crystal.	[4]
	(b)	Describe the FCC crystal structure.	[6]
	(c)	Obtain an expression for the packing factor of FCC structure.	[6]
2.	(a)	What are Miller indices? Explain.	[4]
	(b)	Derive an expression for the interplanar spacing between two adjacent plan of Miller indices (h k l) in a cubic lattice of edge length 'a'.	nes [8]
	(c)	Calculate the interplanar spacing for (321) planes in a simple cubic cryst whose lattice constant is 4.2 A.U.	tal [4]
3.	(a)	What are matter waves? Explain their properties.	[6]
	(b)	Derive the expression for de-Broglie wave length.	[6]
	(c)	Calculate the wavelength associated with an electron having energy 2000 e	V. [4]
4.	(a)	What is Fermi level?	
	~ /		[2]
	(b)	Explain Fermi-Dirac distribution for electrons in a metal. Discuss its variati with temperature.	on [8]
	(c)) Calculate the free electron concentration, mobility and drift velocity of electrons in aluminum wire of length of 5 m and resistance 0.06 Ω carrying current of 15 A, assuming that each aluminum atom contributes 3 free electrons for conduction.	
		Given: Resistivity for aluminum = $2.7 \times 10^{-8} \Omega$ -m.	
		Atomic weight = 26.98 Density = $2.7 \times 10^3 \text{ kg}/m^3$	
		Avagadro number $= 6.025 \times 10^{23}$	[6]

- 5. (a) What are the properties of diamagnetic materials?
 - (b) Explain why the diamagnetic materials repel the magnetic lines of force. [6]
 - (c) Explain the properties of paramagnetic materials.

Set No. 1

6.	(a)	Distinguish between metals, semiconductors and insulators.	[6]
	(b)	Explain the effect of temperature on resistivity of a semiconductor.	[4]
	(c)	Derive an expression for the number of electrons per unit volume in the co- duction band of an intrinsic semiconductor.	on- [6]
7.	(a)	Explain the terms:	
		i. temporal coherence	
		ii. population inversion	
		iii. metastable state	
		iv. stimulated emission [10]
	(b)	Why is the optical resonator required in lasers? Illustrate your answer w neat sketches.	ith [6]
8.	(a)	Explain the principle of an optical fibre.	[4]
	(b)	Explain how the optical fibres are classified.	[8]
	(c)	Calculate the angle of acceptance of a given optical fibre if the refractive indi- of the core and the cladding are 1.563 and 1.498 respectively.	ces [4]

	1. 1/4515	
	ii. space lattice and	
	iii. unit cell.	
(b)	Describe the seven crystal systems with diagrams. [10	[C
(a)	State and explain Bragg's law. [6]	6]
(b)	Describe with suitable diagram, the powder method for determination of crystal structure.	s- 6]
(c)	A beam of X-rays of wavelength 0.071 nm is diffracted by (110) plane of roc salt with lattice constant of 0.28 nm. Find the glancing angle for the secon order diffraction.	ek d 4]
(a)	Distinguish between Frenkel and Schottkey defects. [8]	8]
(b)	Derive an expression for the energy change due to creation of vacancies inside a solid.	le 8]
(a)	Explain the origin of energy bands in solids.	
	[(6]
(b)	Assuming the electron - lattice interaction to be responsible for scattering of conduction electrons in a metal, obtain an expression for conductivity in term of relaxation time and explain any three draw backs of classical theory of free electrons.	of ns œ ô]
(c)	Find the temperature at which there is 1% probability of a state with a energy 0.5 eV above Fermi energy. [4]	n 4]
(a)	Discuss the spin arrangements in ferromagnetic, ferrimagnetic and anti-ferrom materials. [10]	nagnetic)]
(b)	How does an anti-ferromagnetic substance differ from diamagnetic substance [6]	e? 6]

1. (a) Explain the terms

Code No: R05010201

i hasis

5.

- [10]
- 2.
 - on of crys-
 - [6]ne of rock he second
- [4]
- 3.
 - eies inside [8]
- 4.

(Common to Electrical & Electronic Engineering, Electronics &

I B.Tech Supplimentary Examinations, Aug/Sep 2008 APPLIED PHYSICS

Communication Engineering, Computer Science & Engineering, Electronics & Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics & Control Engineering, Computer Science & Systems Engineering, Electronics & Telematics, Electronics & Computer

Engineering and Instrumentation & Control Engineering) Time: 3 hours

Max Marks: 80

Answer any FIVE Questions

[6]

Set No. 2

All Questions carry equal marks

6.	(a)	Explain the applications of Hall effect.	[6]
	(b)	Write a note on diffusion length.	[6]
	(c)	The resistivity of an intrinsic semiconductor is 4.5 ohm-m at 20 ^{o}C and 2.0 ohm-m at 32 ^{o}C . What is the energy band gap?	[4]
7.	(a)	Explain the characteristics of a laser beam.	[4]
	(b)	Describe the construction and working of a ruby laser.	[8]
	(c)	Discuss how lasers are helpful in induced fusion and isotope separation proce	esses. [4]
8.	(a)	Distinguish between light propagation in	
		i. step index and	
		ii. graded index optical fibres.	[6]
	(b)	Discuss the various advantages of communication with optical fibres over conventional coaxial cables.	the [6]
	(c)	Calculate the refractive indices of core and cladding of an optical fibre wit numerical aperture of 0.33 and their fractional difference of refractive indi- being 0.02.	h a .ces [4]

I B.Tech Supplimentary Examinations, Aug/Sep 2008 APPLIED PHYSICS

(Common to Electrical & Electronic Engineering, Electronics & Communication Engineering, Computer Science & Engineering, Electronics & Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics & Control Engineering, Computer Science & Systems Engineering, Electronics & Telematics, Electronics & Computer Engineering and Instrumentation & Control Engineering) Max Marks: 80

Time: 3 hours

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Explain the terms
 - i. basis
 - ii. space lattice and
 - iii. unit cell.

(b) Describe the seven crystal systems with diagrams. [10]

- 2.(a) Sketch the planes with Miller indices (123) and (221) in the case of a simple cubic structure. [4]
 - (b) Derive Bragg's law for X-ray diffraction in crystals.
 - (c) When a beam of X-rays of $\lambda = 1.8$ A.U. is incident on a crystal surface, the second order maximum is obtained at a glancing angle of 15° . Calculate the corresponding inter-planar spacing. [4]

(a) Derive time independent Schrodinger's wave equation for a free particle. [8] 3.

- (b) Explain the physical significance of wave function.
- (c) An electron is bound in a one-dimensional infinite well of width 1×10^{-10} m. Find the energy values in the ground state and first two excited states. [4]
- 4. (a) Explain the origin of energy bands in solids.
 - (b) Assuming the electron lattice interaction to be responsible for scattering of conduction electrons in a metal, obtain an expression for conductivity in terms of relaxation time and explain any three draw backs of classical theory of free electrons. [6]
 - (c) Find the temperature at which there is 1% probability of a state with an energy 0.5 eV above Fermi energy. [4]
- 5. (a) Explain ferro-electric hysteresis curve.
 - (b) What are the mechanisms of polarization in dielectrics? Discuss the polarization of ionic dielectrics not having permanent dipoles. [8]

Set No. 3

[6]

[8]

[6]

[4]

[4]

Set No. 3

- (c) A parallel plate capacitor of area 650 mm². and plate separation of 4 mm has a charge of 2×10^{-10} C on it. What is the resultant voltage across the capacitor when a material of dielectric constant 3.5 is introduced between the plates? [4]
- 6. (a) Describe Meissner effect. [6]
 - (b) Write notes on Type-I and Type -II superconductors. [6]
 - (c) Calculate the critical current which can flow through a superconductor wire of aluminium of diameter 10^{-3} m. The critical magnetic field for aluminium is 7.9×10^{-3} amp/m. [4]
- 7. (a) Explain with a neat diagram
 - i. absorption
 - ii. spontaneous emission and
 - iii. stimulated emission of radiation. [8]
 - (b) What is population inversion? How it is achieved by optical pumping? [8]
- 8. (a) Derive expressions for the numerical aperture and the fractional index change of an optical fibre. [8]
 - (b) Write a note on the applications of optical fibres. [4]
 - (c) Calculate the fractional index change for a given optical fibre if the refractive indices of the core and the cladding are 1.563 and 1.498 respectively. [4]

Technology, Electronics & Control Engineering, Computer Science & Systems Engineering, Electronics & Telematics, Electronics & Computer Engineering and Instrumentation & Control Engineering) ime: 3 hours				
me	Answer any FIVE Questions All Questions carry equal marks *****			
1.	(a)	Explain the terms i. basis ii. space lattice and iii. unit cell.	[6]	
	(b)	Describe the seven crystal systems with diagrams.	[10]	
2.	(a)	State and explain Bragg's law.	[6]	
	(b)	Describe with suitable diagram, the powder method for determination tal structure.	n of crys- [6]	
	(c)	A beam of X-rays of wavelength 0.071 nm is diffracted by (110) plan salt with lattice constant of 0.28 nm. Find the glancing angle for the order diffraction.	ie of rock ie second [4]	
3.	(a)	Explain the various point defects in a crystal.	[8]	
	(b)	Obtain the expression for the equilibrium concentration of vacancies at a given temperature.	in a solid [8]	
4.	(a)	Explain the origin of energy bands in solids.		
			[6]	
	(b)	Assuming the electron - lattice interaction to be responsible for scat conduction electrons in a metal, obtain an expression for conductivity of relaxation time and explain any three draw backs of classical theo electrons.	tering of in terms ry of free [6]	
	(c)	Find the temperature at which there is 1% probability of a state energy 0.5 eV above Fermi energy.	with an [4]	
5.	(a)	Define the terms magnetic susceptibility, magnetic induction and perr How is magnetic susceptibility of a material measured?	neability. [10]	
	(b)	Explain the salient features of anti-ferromagnetic materials.	[6]	
6.	(a)	What is meant by superconductivity? Explain.	[6]	

Communication Engineering, Computer Science & Engineering, Electronics & Instrumentation Engineering, Bio-Medical Engineering, Information

(Common to Electrical & Electronic Engineering, Electronics &

I B.Tech Supplimentary Examinations, Aug/Sep 2008 **APPLIED PHYSICS**

Code No: R05010201

Set No. 4

Set No. 4

	(b)	Show that the superconductors are perfect diamagnetic materials.	[6]
	(c)	Write some of the applications of superconductors.	[4]
7.	(a)	Describe the principle, construction and working of a semiconductor la	$\operatorname{ser.}[10]$
	(b)	Write the applications of laser.	[6]
8.	(a)	Write notes on:	
		i. fibre materials	
		ii. light sources for fibre optics	
		iii. photo-detectors for fibre optics	[6]
	(b)	Explain the terms	
		i. numerical aperture and	
		ii. acceptance angle of a fibre.	
		Derive expressions for them.	[10]
