Set No. 1

III B.Tech Supplimentary Examinations, Aug/Sep 2008 CHEMICAL REACTION ENGINEERING-I (Chemical Engineering)

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Define reaction rate constant. Develop an expression that facilitates calculation of units of rate constant for any order. |6|
 - (b) Determine equilibrium conversion of A at 373⁰K for the following aqueous reaction.

A
$$\frac{k_1}{k_2}$$
 R $\Delta G^0 = -3375$ K cal/K mole
 $\Delta H_r^0 = -18,000$ K cal/K mole

Assume specific heats of all solutions are equal to that of water. [10]

- 2. (a) A first order gaseous reaction $A \rightarrow 2R + S$ takes place isothermally in a constant pressure experimental reactor. Starting with a mixture of 75% A and 25% inerts the volume doubles in 8 minutes. What is the conversion achieved? [8]
 - (b) Write a note on excess reactant and stoichiometric proportion methods. [8]
- 3. For the non elementary reaction $A + 2B \rightarrow R + S$ if the mechanism suggested is

$$\mathbf{A} + \mathbf{B} \stackrel{k_1}{\underset{k_2}{\rightleftharpoons}} \mathbf{R} + \mathbf{X}$$

 $B + X \xrightarrow{K_3} S$

where X is the unstable intermediate compound,

- (a) Derive an expression for rate of disappearance of A
- (b) Explain how the rate constants can be evaluated using the rate law. [8+8]
- 4. Sulfuryl chloride (SO_2Cl_2) is to be dissociated in a plug flow reactor to sulfur dioxide and chlorine at $330^{\circ}C$ with rate constant of 1.32×10^{-3} per min. for a feed rate of 25 kg/hr of pure SO_2Cl_2 . And 90% conversion. Determine (i) volume of reactor (ii) Space velocity (iii) Actual residence time. [16]
- 5. At present we have 90% conversion of a liquid feed (n = 1, $C_{AO} = 10 \text{ mol/liter}$) to our plug flow reactor with recycle of product (R = 2). If we shut off the recycle stream, by how much will this lower the processing rate of our feed to the same 90% conversion? [16]
- 6. Determine the order of reaction and the weight of catalyst needed for 35% conversion of A to R for a feed of 2000 mol/hr of pure A at 117^{0} C and 3.2 atm. For this reaction the stoichiometry is $A \rightarrow R$ and the kinetic data are given as follows:

Set No. 1

	1	2	3	4			
$_{n,}$ mol/liter	0.100	0.080	0.060	0.040			
$_{ut}$, mol/liter	0.084	0.070	0.055	0.038			
me plug flow	in the p	acked b	bed reac	tor.			[16]
e the energy	balance	equation	on for a	diabatic	operation of P	FR.	[16]
e detailed not	e on:						
Design proce	dure for	flow re	actor				
Shifting orde	r reactio	ons.				[[8+8]
	$n_{n,}$ mol/liter $n_{n,}$ mol/liter me plug flow we the energy e detailed not Design proce Shifting orde	1 1 n, mol/liter 0.100 put, mol/liter 0.084 me plug flow in the p we the energy balance e detailed note on: Design procedure for Shifting order reaction	1 2 n, mol/liter 0.100 0.080 nut, mol/liter 0.084 0.070 me plug flow in the packed by the energy balance equations the detailed note on: Design procedure for flow resolutions.	1 2 $3n, mol/liter$ 0.100 0.080 $0.060nut, mol/liter$ 0.084 0.070 $0.055me plug flow in the packed bed reacwe the energy balance equation for ae detailed note on:Design procedure for flow reactorShifting order reactions.$	1 2 3 $4n, mol/liter$ 0.100 0.080 0.060 $0.040nut, mol/liter$ 0.084 0.070 0.055 $0.038me plug flow in the packed bed reactor.We the energy balance equation for adiabaticthe detailed note on:Design procedure for flow reactorShifting order reactions.$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Time: 3 hours

Set No. 2

III B.Tech Supplimentary Examinations, Aug/Sep 2008 CHEMICAL REACTION ENGINEERING-I (Chemical Engineering)

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. For the general reaction scheme $aA + bB \rightarrow rR + sS$ explain and derive expressions for the following. $[4 \times 4 = 16]$
 - (a) General mole relation (Stoichiometric equation)
 - (b) Fractional conversion
 - (c) Rate of reaction
 - (d) Law of mass action

Show what form they take when the reaction under consideration is a constant volume reaction.

2. A tri molecular elementary reaction $A + 2B \rightarrow$ Products, takes place in a batch reactor. Using the following data find a suitable rate equation.

The component B is introduced at 1 mole/lit. along with component A. Derive the equation used. [16]

- 3. A reaction $2A + B \rightarrow A_2B$ is non-elementary and has the rate equation as $r_{A_2B} = K[A]$ [B]. Suggest and verify a suitable mechanism which is consistent with observed rate law. [16]
- 4. A high molecular weight hydrocarbon stream A is fed continuously to a high temperature mixed reactor where it thermally cracks (homogeneous gas reaction) into lower molecular weight materials, R by the reaction, $A \rightarrow 5$ R By changing the feed rate different extents of cracking are obtained as follows:

 F_A , millimol/hr 300 1000 3000 5000 C_A , millimol/hr 16 30 50 60

The internal void volume of the reactor is 0.1 litre and the feed concentration is 100 millimol/liter. Find rate equation to represent the cracking reaction. [16]

- 5. (a) Derive an expression for the concentration of reactant in the effluent from a series of mixed reactors of different sizes. Let the reaction follow first?order kinetics and let the holding time in the i^{th} reactor be t_i .
 - (b) Show that this expression reduces to the appropriate equation when the reactors are all the same size. [8+8]

Set No. 2

6.	For the solid catalyzed reaction $A+B \Leftrightarrow R$ derive the expression for the rareaction if adsorption of B is rate controlling.	te of [16]
7.	Derive the energy balance equation for adiabatic operation of PFR.	[16]
8.	Write short notes on:	
	(a) Law of mass action	

(b) Single and multiple reactions. [8+8]

Set No. 3

III B.Tech Supplimentary Examinations, Aug/Sep 2008 CHEMICAL REACTION ENGINEERING-I (Chemical Engineering)

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Define reaction rate constant. Develop an expression that facilitates calculation of units of rate constant for any order. |6|
 - (b) Determine equilibrium conversion of A at 373⁰K for the following aqueous reaction.

$$A \stackrel{k_1}{\underset{k_2}{\leftarrow}} R \qquad \Delta G^0 = -3375 \text{ K cal/K mole}$$

$$\Delta H_r^0 = -18,000 \text{ K cal/K mole}$$

Assume specific heats of all solutions are equal to that of water. [10]

- 2. For the reaction in series $A \to R \to S$ with $k_1 \neq k_2$, find the maximum concentration of R and when it is reached in a batch reactor? k_1 and k_2 are the rate constants for the first and second reactions. Show what happens if $K_1 = K_2$. [16]
- 3. (a) What is a chain reaction? Define chain length.
 - (b) Thermal decomposition of acetaldehyde is postulated to proceed by the chain mechanism $CH_3CHO \rightarrow CH_3^* + CHO^*$ $CH_3CHO + CH_3^* \rightarrow CH_4 + CO + CH_3^*$ $2CH_3^* \rightarrow C_2H_6$ observing the rate of first reaction is small in comparison with the second when chains are long, show that $\frac{-d[CH_3CHO]}{dt} = K[CH_3CHO]^{1.5}$ [4+12]
- 4. The decomposition of gaseous A proceeds as follows

$$\mathbf{A} \to \mathbf{R} \ (-r_A) = k C_A^2$$

A tubular reactor of 2 liters volume is fed at 2 m^3/hr of pure A at 300^0C and 20 atm. Conversion of reactant is 65%. In a commercial plant, it is desired to treat $100m^3/hr$ of feed gases at 40 atm and 300^0C containing 60%A and 40% diluents to obtain 85% conversion of A. Find the volume of reactor required. [16]

- 5. Substance A reacts according to second order kinetics and conversion is 95% from a single flow reactor. We buy a second unit identical to the first. For the same conversion, by how much is the capacity increased if we operate these two units in parallel or in series?
 - (a) The reactors are both plug flow.
 - (b) The reactors are both mixed flow. [8+8]

- 6. (a) Describe the different types of catalysts with examples.
 - (b) Explain the three mechanisms by which a reactant absorbed onto the catalyst surface is capable of reacting to form the product. [10+6]
- 7. Obtain the expression for steady state energy balance for a CSTR under nonisothermal conditions. [16]
- 8. Write detailed notes on:
 - (a) Integral and differential methods
 - (b) Total volume and total pressure methods. [8+8]

Time: 3 hours

Set No. 4

III B.Tech Supplimentary Examinations, Aug/Sep 2008 CHEMICAL REACTION ENGINEERING-I (Chemical Engineering)

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

1. (a) The hydrogenation of acetylene over a catalyst is represented by the reaction $C_2H_2+H_2 \rightleftharpoons C_2H_4$ Compute the standard heat of reaction. The following data is available. [10]

$Temperature {}^{0}K$	298	600	1000
Equilibrium constant, atm^{-1}	5.1931024	1.194109	501.4

- (b) How do you compute the equilibrium composition in case of multiple reactions?[6] Discuss.
- 2. The gas reaction $2A \rightarrow R + 2S$ is approximately second order with respect to A. When pure A is introduced at 1 atm. into a constant volume batch reactor, the pressure rises 40% in 3 minutes. For a constant pressure batch reactor find
 - (a) the time required for the same conversion [8]
 - (b) the fractional increase in volume at that time. [8]
- 3. The pysolysis of acetaldehyde is to take place according to the mechanism.

 $CH_3CHO \rightarrow CH_3^* + CHO^*$

 $CH_3^* + CH_3CHO \rightarrow CH_3^* + CO + CH_4$ $CHO^* + CH_3CHO \rightarrow CH3^* + 2CO + H_2$ $2CH_3^* \rightarrow C_2H_6$

Derive the rate expression for the decomposition of acetaldehyde. Under what conditions the rate law reduces to $-r_{CH_3CHO} = K[CH_3CHO]^{3/2}$ [16]

- 4. A homogeneous liquid phase reaction $A \to R$, $(-r_A) = kC_A^2$ takes place with 50% conversion in a mixed reactor. What will be the conversion, if this reactor is replaced by one 6 times as large, all else remaining unchanged. What will be the conversion if the original reactor is replaced by a plug flow reactor of equal size, all else remaining same. [16]
- 5. Substance A reacts according to second order kinetics and conversion is 95% from a single flow reactor. We buy a second unit identical to the first. For the same conversion, by how much is the capacity increased if we operate these two units in parallel or in series?
 - (a) The reactors are both plug flow.
 - (b) The reactors are both mixed flow. [8+8]

- Set No. 4
- 6. For the solid catalyzed reaction $A \leftrightarrows R$ derive the expression for the rate of reaction if adsorption of A is rate controlling. [16]
- 7. For the first order reactions $A \xrightarrow{k_1} R \xrightarrow{k_2} S$ occuring in a mixed reactor develop the expression for $C_{R,max}$ and $\tau_{m,opt}$. [16]
- 8. Write detailed note on:
 - (a) Enzyme substrate reactions
 - (b) Methods of analysis of kinetic data. [8+8]