1. (a) Derive an equation for I_{DS} of an n-channel Enhancement MOSFET operating in linear region.

III B.Tech II Semester Supplimentary Examinations, Apr/May 2008 VLSI DESIGN (Common to Electronics & Communication Engineering and Electronics & Telematics)

> Answer any FIVE Questions All Questions carry equal marks *****

- (b) A PMOS transistor is operating in saturation region with the following parameters. $V_{GS} = -5V$; $V_{tp} = -1.2V$; W/L = 95; $\mu nCox = 95 \ \mu A/V^2$ Find Trans conductance of the device. [8+8]
- 2. With neat sketches explain how Diodes and Resistors are fabricated in Bipolar process. [16]
- 3. Design a stick diagram for two input n-MOS NAND and NOR gates. [16]
- 4. Design a layout diagram for nMOS inverter. [16]
- 5. Calculate ON resistance from V_{DD} to GND for the given inverter circuit shown in Figure 5, If n-channel sheet resistance is $3 \times 10^4 \Omega$ per square. [16]

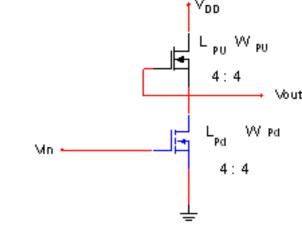


Figure 5

- 6. Clearly discus about the following FPGA Technology
 - (a) Anti fuse Technology.
 - (b) Static RAM Technology.
- 7. Explain the following process in the ASIC design flow.
 - (a) Functional gate level verification.

Set No. 1

[8+8]

Code No: RR320405

Time: 3 hours

Code No: RR320405

- (b) Static timing analysis. [8+8]
- 8. (a) Mention the properties of the twin oxide.
 - (b) Clearly explain about ION implantation step in IC fabrication. [6+10]

Set No. 2

III B.Tech II Semester Supplimentary Examinations, Apr/May 2008 VLSI DESIGN

(Common to Electronics & Communication Engineering and Electronics & Telematics)

Time: 3 hours

Max Marks: 80

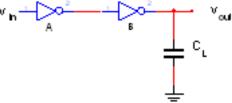
Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) With neat sketches explain the formation of the inversion layer in P-channel Enhancement MOSFET.
 - (b) An NMOS Transistor is operated in the triode region with the following parameters $V_{GS} = 4V$; $V_{tn} = 1V$; $V_{DS} = 2V$; W/L = 100; $\mu nCox = 90 \ \mu A/V^2$ Find its drain current and drain source resistance. [8+8]
- 2. (a) With neat sketches explain how resistors and capacitors are fabricated in pwell process.
 - (b) With neat sketches explain how resistors and capacitors are fabricated in nwell process. [8+8]
- 3. Design a stick diagram for the CMOS logic shown below $Y = \overline{(AB + CD)}$ [16]
- 4. Design a layout diagram for the NMOS logic shown below $Y = \overline{(A+B).C}$ [16]
- 5. Explain clearly about different parastic capacitances of an nMOS transistor. [16]
- 6. Implement Full-adder circuit using PAL. [16]
- 7. What is need for RTL simulation? Clearly explain RTL simulation flow in the ASIC design flow and also mention few leading simulation tools. [16]
- 8. With neat sketches explain the ION- lithography process. [16]

Set No. 3

III B.Tech II Semester Supplimentary Examinations, Apr/May 2008 VLSI DESIGN

(Common to Electronics & Communication Engineering and Electronics & Telematics)


Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- *****
- 1. (a) With neat sketches explain the formation of the inversion layer in P-channel Enhancement MOSFET.
 - (b) An NMOS Transistor is operated in the triode region with the following parameters $V_{GS} = 4V$; $V_{tn} = 1V$; $V_{DS} = 2V$; W/L = 100; $\mu nCox = 90 \ \mu A/V^2$ Find its drain current and drain source resistance. [8+8]
- 2. With neat sketches explain CMOS fabrication using Twin Tub process. [16]
- 3. Design a stick diagram for the PMOS logic shown below $Y = \overline{(AB + CD)}$ [16]
- 4. Design a layout diagram for two input nMOS NAND gate. [16]
- 5. Two nMOS inverters are cascaded to drive a capacitive load $C_L=16$ Cg as shown in Figure 5. Calculate the pair delay Vin to Vout in terms of τ for the given data. Inverter -A

$$L_{P,U} = 16\lambda , W_{P,U} = 2\lambda , L_{P,d} = 2\lambda , W_{P,d} = 2\lambda$$

Inverter -B
$$L_{P,U} = 2\lambda , W_{P,U} = 2\lambda , L_{P,d} = 2\lambda , W_{P,d} = 8\lambda$$
[16]

- 6. Clearly discus about the following FPGA Technology
 - (a) Anti fuse Technology.
 - (b) Static RAM Technology. [8+8]

7. Explain the following process in the ASIC design flow.

- (a) Functional gate level verification.
- (b) Static timing analysis. [8+8]
- 8. (a) Mention the properties of the twin oxide.

Code No: RR320405

(b) Clearly explain about ION implantation step in IC fabrication. [6+10]

Set No. 4

III B.Tech II Semester Supplimentary Examinations, Apr/May 2008 VLSI DESIGN

(Common to Electronics & Communication Engineering and Electronics & Telematics)

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) Derive an equation for I_{DS} of an n-channel Enhancement MOSFET operating in linear region.
 - (b) A PMOS transistor is operating in saturation region with the following parameters. $V_{GS} = -5V$; $V_{tp} = -1.2V$; W/L = 95; $\mu nCox = 95 \ \mu A/V^2$ Find Trans conductance of the device. [8+8]
- 2. (a) Compare between CMOS and bipolar technologies.
 - (b) With neat sketches explain nMOS fabrication process. [8+8]
- 3. Design a stick diagram for the CMOS logic shown below $Y = \overline{(A+B).C}$ [16]
- 4. Design a layout diagram for two input CMOS NOR gate. [16]
- 5. Calculate ON resistance from V_{DD} to GND for the given inverter circuit shown in Figure 5, If n-channel sheet resistance is $3 \times 10^4 \Omega$ per square. [16]

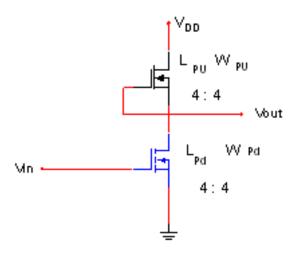


Figure 5

- 6. With neat sketch clearly explain the architecture of a PLA. [16]
- 7. (a) What is the goal of VHDL synthesis step in design flow?
 - (b) Explain how register transfer level description provides optimized synthesis netlist. [8+8]
- 8. With neat sketches explain the ION- lithography process. [16]
