Set No. 1

III B.Tech II Semester Regular Examinations, Apr/May 2008 COMPILER DESIGN (Computer Science & Engineering)

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. Explain the input buffer scheme for scanning the source program. How the use of sentinels can improve its performance? Describe in detail. [16]
- 2. Construct predictive parsing table for the following grammar.

$$\begin{array}{l} \mathbf{E} \to \mathbf{T} \ \mathbf{E}' \\ \mathbf{E}' \to +\mathbf{T} \ \mathbf{E}' | \varepsilon \\ \mathbf{T} \to \mathbf{F} \ \mathbf{T}' \\ \mathbf{T}' \to \ ^*\mathbf{F} \ \mathbf{T}' | \varepsilon \\ \mathbf{F} \to (\mathbf{E}) | \mathbf{id} \end{array}$$
 [16]

- 3. (a) What is an operator grammar? Give an example.
 - (b) Write an operator precedence parsing algorithm. [6+10]
- 4. (a) Write a note on the specification of a simple type checker.
 - (b) What is a type expression? Explain the equivalence of type expressions with an appropriate examples. [8+8]
- 5. (a) Compare three different storage allocation strategies.
 - (b) Consider the following array declaration in 'c'; float a[100][100]; Assume that the main memory in byte addressable and that the array is stored starting from the memory address 100. What is the address of a[40][50]?[8+8]
- 6. Explain different principal sources of optimization technique with suitable examples. [16]
- 7. (a) Write and explain live variable analysis algorithm.
 - (b) Explain the use of algebraic transformations with an example [8+8]
- 8. (a) Explain the different issues in the design of a code generator.
 - (b) Generate code for the following C statements:

i.
$$x = f(a) + f(a) + f(a)$$

ii. $x = f(a) / g(b,c)$
iii. $x = f(f(a))$
iv. $x = ++f(a)$ [8+8]

1 of 1

Set No. 2

III B.Tech II Semester Regular Examinations, Apr/May 2008 COMPILER DESIGN (Computer Science & Engineering)

Time: 3 hours

Max Marks: 80

[16]

Answer any FIVE Questions All Questions carry equal marks ****

- (a) Explain the different phases of a compiler, showing the output of each phase, using the example of the following statement: position : = initial + rate * 60
 - (b) Compare compiler and interpreter with suitable diagrams. [10+6]
- 2. (a) What is recursive descent parser? Construct recursive descent parser for the following grammar.

 $E \to E + T|T$ $T \to TF|F$

 $\mathbf{F} \to \mathbf{F}^* |\mathbf{a}| \mathbf{b}$

- (b) What is ambiguous grammar? Eliminate ambiguities for the grammar: $E \rightarrow E + E|E^*E|(E)|id.$ [8+8]
- 3. Construct SLR parsing table for the following grammar. S \rightarrow AS|b

 $A \rightarrow SA|a$

- 4. (a) Write the quadruple, triple, indirect triple for the statement a := b* c + b* c.
 (b) Explain the role of intermediate code generator in compilation process. [8+8]
- 5. Write an algorithm to perform the table lookup and insertion operation for hashed symbol table. [16]
- 6. (a) What is code optimization? What are its advantages?
 - (b) Explain briefly about folding.
 - (c) What are the problems in optimizing compiler design? [5+5+6]
- 7. (a) Explain reducible and non-reducible flow graphs with an example.
 - (b) Explain natural loops and inner loops of a flow graph with an example. [8+8]
- 8. (a) Explain the concept of object code forms.
 - (b) Generate optimal machine code for the following C program. [6+10] main()

```
{
int i, a[10];
while (i<=10) a[i] =0
}
```

III B.Tech II Semester Regular Examinations, Apr/May 2008 COMPILER DESIGN (Computer Science & Engineering)

Time: 3 hours

Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) Explain, in detail, lexical analyzer generator.
 - (b) Describe the lexical errors and various error recovery strategies with suitable examples.
 - [8+8]

- 2. (a) Consider the following grammar.
 - $$\begin{split} &S \to 0A|1\,B|0|\,1\\ &A \to 0S|1\,B|\,1\\ &B \to 0\,A|1\,S\\ & \text{Construct leftmost derivations and parse trees for the following sentences} \end{split}$$
 - i. 0101
 - ii. 1100101
 - (b) Consider the following grammar
 - $E \rightarrow T + E|T$
 - $\begin{array}{l} T \rightarrow V^*T | V \\ V \rightarrow id \end{array}$

Write down the procedures for the nonterminals of the grammar to make a recursive descent parser. [8+8]

- 3. (a) Define LR(k) parser. Draw and explain model of LR parser.
 - (b) Write LR parsing algorithm. [8+8]
- 4. (a) Write the quadruple, triple, indirect triple for the statement $a := b^* c + b^* c$.
 - (b) Explain the role of intermediate code generator in compilation process. [8+8]
- 5. (a) What is an ordered and unordered symbol table? What is the function of symbol table in the compliation process? Explain.
 - (b) What are the various attributes of a Symbol Table? [10+6]
- 6. Explain different principal sources of optimization technique with suitable examples. [16]
- 7. Explain about data flow analysis of structured programs. [16]
- 8. (a) Explain the concept of object code forms.

Set No. 3

Max Marks: 80

(b) Generate optimal machine code for the following C program. [6+10] main() { int i, a[10]; while (i<=10) a[i] =0 }

Set No. 4

III B.Tech II Semester Regular Examinations, Apr/May 2008 COMPILER DESIGN (Computer Science & Engineering)

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks $\star \star \star \star \star$

 (a) Consider the following fragment of 'C' code: float i, j; i = i * 70 + j + 2; Write the output at all phases of the compiler for the above 'C' (b) Write short notes on: input buffering. 	C' code. [10+6]
2. (a) What is recursive descent parser? Construct recursive descent following grammar. $E \rightarrow E + T T$ $T \rightarrow TF F$ $F \rightarrow F^* a b$	parser for the
(b) What is ambiguous grammar? Eliminate ambiguities for the gr $E \rightarrow E + E E^*E (E) id.$	rammar: [8+8]
3. Construct SLR parsing table for the following grammar. S \rightarrow AS b A \rightarrow SA a	[16]
4. Write short notes on the following:	
(a) S-attributed definitions.	
(b) L-attributed definitions.	
(c) Dependency graph.	[6+6+4]
5. (a) What is an ordered and unordered symbol table? What is to symbol table in the compliation process? Explain.	the function of
(b) What are the various attributes of a Symbol Table?	[10+6]
6. Explain different principal sources of optimization technique with suitable examples. [16]	
7. A flow graph is useful for understanding code generation algorithm answer with an example.	n? Justify your [16]
8. Discribe various Register allocation optimization techniques with an example. [16]	
