Set No.1

II B.Tech. I Semester Regular Examinations, November -2008 DIGITAL LOGIC DESIGN (Common to Computer Science & Engineering,Information Technology and

Computer Science & Systems Engineering)

Time: 3 hours

Max Marks: 80

[16]

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Convert the following number with indicated bases to decimal $[4 \times 2=8]$
 - i. $(1 \ 0 \ 1 \ 1 \ 1 \ 1)_2 =$
 - ii. $(A \ 3 \ B)_{16} =$
 - iii. $(2 \ 3 \ 7)_8 =$
 - iv. $(4 \ 3)_5 =$

(b) Obtain the 1's and 2's complements of the following binary numbers $[4 \times 2=8]$

- i. 1 1 1 0 1 0 1 0 = ii. 0 1 1 1 1 1 1 0 = iii. 1 0 0 0 0 0 0 0 0 = ii. 0 0 0 0 0 0 0 0 0 =
- iv. $0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 =$
- 2. (a) Simplify the following Boolean expression to a minimum number of literals.
 - i. $F = (B \overline{C} + \overline{A} D) (A \overline{B} + C \overline{D})$
 - ii. $\mathbf{F} = \mathbf{W}\mathbf{Y}\mathbf{Z} + \mathbf{X}\mathbf{Y} + \mathbf{X} \ \overline{Z} + \mathbf{Y}\mathbf{Z}$
 - (b) Express the following function in sum of minterms and product of maxterms. $F(A, B, C, D) = \overline{B} D + \overline{A} D + BD$ [8+8]
- 3. Implement the following Boolean function with NAND gates $F(x,y,z) = \Sigma (1,2,3,4,5,7).$ [16]
- 4. Design a code converter that converts BCD to excess 3 code. [16]
- 5. (a) Discuss indetail about sequential circuit.

(b) Construct a JK flip-flop using a D flip-flop, a 2-to-1 multiplexer and inverter. [8+8]

- 6. (a) Design a serial Adder in shift registers.
 - (b) Write a HDL behavioral description of shift register. [8+8]
- 7. (a) Explain about internal construction of 4×4 RAM
 - (b) Design a combinational circuit using a ROM. The circuit accepts a 3-bit number and generates an output binary number equal to the square of the input number.
 [8+8]
- 8. Explain about SR Latch with example.

1 of 1

II B.Tech. I Semester Regular Examinations, November -2008 DIGITAL LOGIC DESIGN (Common to Computer Science & Engineering, Information Technology and Computer Science & Systems Engineering) Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- (a) Convert the following numbers. 1.
 - i. $(53)_{10} = ()_2$ ii. $(231)_4 = ()_{10}$
 - iii. $(1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1)_2 = ()_8$
 - iv. $(4D.56)_{16} = ()_2$
 - (b) Add and subtract in binary
 - i. 1 1 1 1 and 1 0 1 0 ii. 1 1 0 1 1 0 and 1 1 1 0 1 iii. $1 \ 0 \ 0 \ 1 \ 0 \ 0$ and $1 \ 0 \ 1 \ 1 \ 0$ iv. 1 1 0 1 0 0 1 and 1 1 0 1 1
- 2. (a) Implement the following Boolean function using AND, OR and inverter gates. $\mathbf{F} = \mathbf{x}\mathbf{y} + \overline{x}\ \overline{y} + \overline{y}\mathbf{z}.$
 - (b) Using the rules of boolean algebra, simplify the expressions that follow to the fewest total number of literals. [8+8]
 - i. $f = A\overline{B} + ABC + A\overline{C}D$
 - ii. $f = B + AD + BC + [B + A(C+D)]^1$
- 3. Simplify the following Boolean function using four-variable map. F (w, x, y, z) = Σ (1, 3, 7, 11, 15) + d(0, 2, 5). [16]
- 4. (a) Explain carry propagation in parallel adder with a neat diagram.
 - (b) What is a decoder? Construct a 4×16 decoder with two 3×8 decoders. [8+8]
- 5. A Sequential circuit with two D flip-flops A and B, two inputs x and y and one output z is specified by the following next-state and output equation. [16] $A(t+1) = \overline{x}y + xA$

z=B.

 $B(t+1) = \overline{x}B + xA$

- (a) Draw the logic diagram of the circuit.
- (b) List the state table for the sequential circuit.
- (c) Draw the corresponding state diagram.
- 6. (a) Write about the HDL behaviral description of a 4-bit shift register.

 $[4 \times = 8]$

 $[4 \times = 8]$

Set No.2

Code No: 07A3EC16

Set No.2

(b) Write about serial adder.	[8+8]
7. Explain about error detection and correction with example.	[16]
8. (a) Write a procedure for analysing an asynchronous sequential circlatch.	uit with SR
(b) Explain in detail about debounce circuit.	[8+8]

Set No.3

II B.Tech. I Semester Regular Examinations, November -2008 DIGITAL LOGIC DESIGN (Common to Computer Science & Engineering,Information Technology and Computer Science & Systems Engineering) Time: 3 hours Max Marks: 80

> Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) Perform the following binary multiplication operations
 - i. $100010 \times 001010 =$
 - ii. $001100 \times 011001 =$
 - iii. $000100 \times 010101 =$
 - (b) Write the one's and two's complements of the following example.
 - i. 0011001
 - ii. 1110011
 - iii. 111111.

[10+6]

- 2. (a) State and explain the Duality principle with example.
 - (b) Given the Boolean function $F = x\overline{y}z + \overline{xy}z + \overline{w}xy + w\overline{x}y + wxy$
 - i. Obtain the truth table of the function
 - ii. Draw the logic diagram using the original Boolean expression
 - iii. Simplify the function to a minimum number of literals using Boolean algebra.

[6+10]

3. Find all the prime implicatiants for the following Boolean functions and determine which are essential.

$$F(A, B, C, D) = \Sigma(0, 2, 3, 5, 7, 8, 10, 11, 14, 15)$$
[16]

- 4. (a) What is meant by encoder?(b) Design a 4 input priority encoder. [4+12]
- 5. Write the HDL behavioral description of a
 - (a) D flip flop
 (b) F flip flop. [8+8]
- 6. (a) Design a Serial Adder.(b) Write a HDL behavioural description of shift register. [8+8]
- 7. (a) Explain about internal construction of 4×4 RAM.

(b) Design a combinational circuit using a ROM. The circuit accepts a 3-bit number and generates an output binary numbers equal to the square of the input number.

[8+8]

Set No.3

- 8. (a) Explain the difference between asynchronous and synchronous sequential circuits.
 - (b) Write about Hazards in sequential circuits. [8+8]

Set No.4

[8+8]

II (Commo Time: 3 l	B.Tech. I Semester Regular Examinations, Noven DIGITAL LOGIC DESIGN on to Computer Science & Engineering,Information Computer Science & Systems Engineering) hours Answer any FIVE Questions All Questions carry equal marks *****	nber -2008 Technology and Max Marks: 80
1. (a)	Find the decimal equivalent of the following two's complement i. 11111 ii. 10001 iii. 01010 iv. 10011 v. 10101	ent numbers.
(b)	Explain about error Detecting code with example.	[10+6]
2. (a) (b)	Simplify each of the following expressions i. $ABC\overline{D} + \overline{A}\overline{B}CD + C\overline{D}$ ii. $(A + \overline{B})(\overline{A} + \overline{B} + D)(\overline{B} + C + \overline{D})$ Explain about positive and Negative logic in binary signals	. [8+8]
3. Obta	in	
(a) (b)	Sum of product and Product of sum expressions for the function given below $F(A, B, C, D) = \Sigma(0, 1, 2, 5, 8, 9, 10)$	[16]
4. (a)	Implement a Boolean function F (x, y, z)= Σ (2, 4, 6) with a Multiplexer.	
(b)	Explain about Tri - State gates in digital systems.	[8+8]
5. Designation f out f A (t B (t Y = 1))	gn a sequential circuit with two JK flip - flops A,B with one out Y. + 1) = Ax + Bx + 1) = \overline{Ax} $A\overline{x} + B\overline{x}$.	e input X and one [16]
6. (a)	Design a serial Adder using shift register.	
(b)	Write a HDL behavioral description of shift register.	[8+8]
7. (a) (b)	Explain about internal construction of 4×4 RAM with near Design a combinational circuit using a ROM. The circuit number and generates an output binary number equal to	t diagram. t accepts a 3- bit the square of the

input number.

- 8. (a) Explain the difference between asychronous and synchronous circuit.
 - (b) Define fundamental mode operation.
 - (c) Explain the difference between stable and unstable states.
 - (d) What is the difference between an internal state and a total state [4+4+4+4]

