II B.Tech I Semester Regular Examinations, November 2007 PROBABILITY THEORY AND STOCHASTIC PROCESS (Common to Electronics & Communication Engineering, Electronics & Telematics and Electronics & Computer Engineering) Time: 3 hours Answer any FIVE Questions

All Questions carry equal marks

* * * * *

- 1. (a) Discuss Joint and conditional probability.
 - (b) When are two events said to be mutually exclusive? Explain with an example?
 - (c) Determine the probability of the card being either red or a king when one card is drawn from a regular deck of 52 cards. [6+6+4]
- 2. (a) Define rayleigh density and distribution function and explain them with their plots.
 - (b) Define and explain the guassian random variable in brief?
 - (c) Determine whether the following is a valid distribution function. $F(x) = 1 \exp(-x/2)$ for $x \Rightarrow 0$ and 0 elsewhere. [5+5+6]
- 3. (a) State and prove properties of characteristic function of a random variable X
 - (b) Let X be a random variable defined by the density function $f_X(x) = \begin{cases} \frac{5}{4}(1-x^4) & 0 < x \le 1\\ 0 & elsewhere \end{cases}$. Find E[X], E[X²] and variance. [8+8]
- 4. The joint space for two random variables X and Y and corresponding probabilities are shown in table

Find and Plot

- (a) $F_{XY}(x,y)$
- (b) marginal distribution functions of X and Y.
- (c) Find P(0.5 < X < 1.5),
- (d) Find $P(X \le 1, Y \le 2)$ and
- (e) Find $P(1 < X \le 2, Y \le 3)$.

Х, Ү	1,1	2,2	3,3	4,4
Р	0.05	0.35	0.45	0.15

- 5. (a) Show that the variance of a weighted sum of uncorrected random variables equals the weighted sum of the variances of the random variables.
 - (b) Two random variables X and Y have joint characteristic function $\phi X, Y(\omega_1, \omega_2) = \exp(-2\omega_1^2 8\omega_2^2).$
 - i. Show that X and Y are zero mean random variables.

1 of 2

Code No: R059210401

ii. are X and Y are correlated. [8+8]

Set No. 1

- 6. Let X(t) be a stationary continuous random process that is differentiable. Denote its time derivative by $\dot{X}(t)$.
 - (a) Show that $E\left[\stackrel{\bullet}{\times} (t)\right] = 0.$ (b) Find $R_{\times \dot{\times}}(\tau)$ in terms of $R_{\times \times}(\tau)$ sss [8+8]
- 7. (a) Derive the expression for PSD and ACF of band pass white noise and plot them
 - (b) Define various types of noise and explain. [8+8]
- 8. (a) Define the following random processes
 - i. Band Pass
 - ii. Band limited
 - iii. Narrow band. $[3 \times 2 = 6]$
 - (b) A Random process X(t) is applied to a network with impulse response $h(t) = u(t) \exp(-bt)$

where b > 0 is ω constant. The Cross correlation of X(t) with the output Y (t) is known to have the same form:

 $R_{XY}(\tau) = \mathbf{u}(\tau)\tau \exp(-\mathbf{b}\mathbf{Y})$

- i. Find the Auto correlation of Y(t)
- ii. What is the average power in Y(t). [6+4]

II B.Tech I Semester Regular Examinations, November 2007 PROBABILITY THEORY AND STOCHASTIC PROCESS (Common to Electronics & Communication Engineering, Electronics & Telematics and Electronics & Computer Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE Questions

All Questions carry equal marks

- 1. (a) With an example define and explain the following:
 - i. Equality likely events
 - ii. Exhaustive events.
 - iii. Mutually exclusive events.
 - (b) In an experiment of picking up a resistor with same likelihood of being picked up for the events; A as "draw a 47 Ω resistor", B as "draw a resistor with 5% tolerance" and C as "draw a 100 Ω resistor" from a box containing 100 resistors having resistance and tolerance as shown below. Determine joint probabilities and conditional probabilities. [6+10]

<u>Table 1</u>

Number of resistor in a box having given resistance and tolerance.

Resistance(Ω)	<u>Tolerance</u>		
	5% 10% Total		
22	10 14 24		
47	$28 \ 16 \ 44$		
100	24 8 32		
Total	62 38 100		

- 2. (a) What is binomial density function? Find the equation for binomial distrbution function.
 - (b) What do you mean by continuous and discrete random variable? Discuss the condition for a function to be a random variable. [6+10]
- 3. (a) Define moment generating function.
 - (b) State properties of moment generating function.
 - (c) Find the moment generating function about origin of the Poisson distribution. $[3{+}4{+}9]$
- 4. (a) Define conditional distribution and density function of two random variables X and Y
 - (b) The joint probability density function of two random variables X and Y is given by

$$f(x,y) = \begin{cases} a(2x+y^2) & 0 \le x \le 2, \ 2 & \le y \le 4\\ 0 & elsewhere \end{cases}$$
. Find

i. value of 'a'
ii.
$$P(X \le 1, Y > 3)$$
. [8+8]

- 5. (a) let X_i , i = 1,2,3,4 be four zero mean Gaussian random variables. Use the joint characteristic function to show that $E \{X_1 \ X_2 \ X_3 \ X_4\} = E[X_1 \ X_2] \ E[X_3 \ X_4] + E[X_1 X_3] E[X_2 X_4] + E[X_2 X_3] \ E[X_1 X_4]$
 - (b) Show that two random variables X_1 and X_2 with joint pdf. $f_{X_1X_2}(X_1, X_2) = 1/16 |X_1| < 4, 2 < X_2 < 4$ are independent and orthogonal.[8+8]
- 6. A random process $Y(t) = X(t) X(t + \tau)$ is defined in terms of a process X(t) that is at least wide sense stationary.
 - (a) Show that mean value of Y(t) is 0 even if X(t) has a non Zero mean value.
 - (b) Show that $\sigma Y^2 = 2[R_{XX}(0) R_{XX}(\tau)]$
 - (c) If $Y(t) = X(t) + X(t + \tau)$ find E[Y(t)] and σY^2 . [5+5+6]
- 7. (a) If the PSD of X(t) is $Sxx(\omega)$. Find the PSD of $\frac{dx(t)}{dt}$
 - (b) Prove that $S_{xx}(\omega) = S_{xx}(-\omega)$
 - (c) If $R(\tau) = ae^{|by|}$. Find the spectral density function, where a and b are constants. [5+5+6]
- 8. (a) A Signal $x(t) = u(t) \exp(-\alpha t)$ is applied to a network having an impulse response $h(t) = \omega u(t) \exp(-\omega t)$. Here $\alpha \& \omega$ are real positive constants. Find the network response? (6M)
 - (b) Two systems have transfer functions $H_1(\omega) \& H_2(\omega)$. Show the transfer function $H(\omega)$ of the cascade of the two is $H(\omega) = H_1(\omega) H_2(\omega)$.
 - (c) For cascade of N systems with transfer functions $H_n(\omega)$, n=1,2,.... N show that H(ω) = $\pi H_n(\omega)$. [6+6+4]

[4+6+3+3]

II B.Tech I Semester Regular Examinations, November 2007 PROBABILITY THEORY AND STOCHASTIC PROCESS (Common to Electronics & Communication Engineering, Electronics & Telematics and Electronics & Computer Engineering) Time: 3 hours Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Define probability based on set theory and fundamental axioms.
 - (b) When two dice are thrown, find the probability of getting the sums of 10 or 11. [8+8]
- 2. (a) Define cumulative probability distribution function. And discuss distribution function specific properties.
 - (b) The random variable X has the discrete variable in the set $\{-1, -0.5, 0.7, 1.5, 3\}$ the corresponding probabilities are assumed to be $\{0.1, 0.2, 0.1, 0.4, 0.2\}$. plot its distribution function and state is it a discrete or continuous ditribution function. [8+8]
- 3. (a) Explain the concept of a transformation of a random variable X
 - (b) A Gaussian random variable X having a mean value of zero and variance one is transformed to an another random variable Y by a square law transformation. Find the density function of Y.
- 4. Discrete random variables X and Y have a joint distribution function $F_{XY}(x,y) = 0.1u(x+4)u(y-1) + 0.15u(x+3)u(y+5) + 0.17u(x+1)u(y-3) + 0.05u(x)u(y-1) + 0.18u(x-2)u(y+2) + 0.23u(x-3)u(y-4) + 0.12u(x-4)u(y+3)$ Find
 - (a) Sketch $F_{XY}(x, y)$
 - (b) marginal distribution functions of X and Y.
 - (c) $P(-1 < X \le 4, -3 < Y \le 3)$ and
 - (d) Find $P(X < 1, Y \le 2)$.
- 5. (a) let $Y = X_1 + X_2 + \dots + X_N$ be the sum of N statistically independent random variables X_i , i=1,2,\dots, N. If Xi are identically distributed then find density of Y, $f_y(y)$.
 - (b) Consider random variables Y_1 and Y_2 related to arbitrary random variables X and Y by the coordinate rotation. $Y_1=X$ Cos θ + Y Sin θ $Y_2 = -X$ Sin θ + Y Cos θ
 - i. Find the covariance of Y_1 and Y_2 , C_{Y1Y2}
 - ii. For what value of θ , the random variables Y_1 and Y_2 uncorrelated. [8+8]

Code No: R059210401

- Set No. 3
- 6. (a) Define cross correlation function of two random processes X(t) and Y(t) and state the properties of cross correlation function.
 - (b) let two random processes X(t) and Y(t) be defined by $X(t) = A \cos \omega_0 t + B \sin \omega_0 t$ $Y(t) = B \cos \omega_0 t - A \sin \omega_0 t$ Where A and B are random variables and ω_0 is a constant. Assume A and B are uncorrelated, zero mean random variables with same variance. Find the cross correlation function R_{XY} (t,t+ τ) and show that X(t) and Y(t) are jointly wide sense stationary. [6+10]
- 7. (a) If the PSD of X(t) is $Sxx(\omega)$. Find the PSD of $\frac{dx(t)}{dt}$
 - (b) Prove that $S_{xx}(\omega) = S_{xx}(-\omega)$
 - (c) If $R(\tau) = ae^{|by|}$. Find the spectral density function, where a and b are constants. [5+5+6]
- 8. (a) A Stationary random process X(t) having an Auto Correlation function $R_{XX} \tau = 2e^{-4|\tau|}$ is applied to the network shown in figure 8a find
 - i. $S_{XX} (\omega)$ ii. $IH(\omega)I^2$ iii. $S_{YY}(\omega)$. [4+4+2]

Figure 8a

(b) Write short notes on different types of noises. [6]

II B.Tech I Semester Regular Examinations, November 2007 PROBABILITY THEORY AND STOCHASTIC PROCESS (Common to Electronics & Communication Engineering, Electronics & Telematics and Electronics & Computer Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE Questions

All Questions carry equal marks

- 1. (a) Define and explain the following with an example:
 - i. Equally likely events
 - ii. Exhaustive events
 - iii. Mutually exclusive events
 - (b) Give the classical definition of probability.
 - (c) Find the probability of three half-rupee coins falling all heads up when tossed simultaneously. [6+4+6]
- 2. (a) What is poisson random variable? Explain in brief.
 - (b) What is binomial density and distribution function?
 - (c) Assume automobile arrives at a gasoline station are poisson and occur at an average rate of 50/hr. The station has only one gasoline pump. If all cars are assumed to require one minute to obtain fuel. What is the probability that a waiting line will occur at the pump? [5+5+6]
- 3. (a) Define moment generating function.
 - (b) State properties of moment generating function.
 - (c) Find the moment generating function about origin of the Poisson distribution. $[3{+}4{+}9]$

4. Given the function
$$f(x,y) = \begin{cases} (x^2 + y^2)/8\pi & x^2 + y^2 < b \\ 0 & elsewhere \end{cases}$$

- (a) Find the constant 'b' so that this is a valid joint density function.
- (b) Find $P(0.5b < X^2 + Y^2 < 0.8b)$. [7+9]
- 5. Three statistically independent random variables X_1, X_2 and X_3 have mean values $\bar{X}_1 = 3$, $\bar{X}_2 = 6$ and $\bar{X}_3 = -2$. Find the mean values of the following functions.

(a)
$$g(X_1, X_2, X_3) = X_1 + 3X_2 + 4X_3$$

(b) $g(X_1, X_2, X_3) = X_1 X_2 X_3$
(c) $g(X_1, X_2, X_3) = -2X_1, X_2 - 3X_1 X_3 + 4X_2 X_3$
(d) $g(X_1, X_2, X_3) = X_1 + X_2 + X_3.$ [16]

Code No: R059210401

6. Statistically independent zero mean random processes X(t) and Y(t) have auto correlations functions $R_{XY}(\tau) = e^{-|\tau|} \text{ and }$

Set No. 4

[8+8]

 $R_{YY}(\tau) = \cos(2\Pi\tau)$ respectively.

- (a) find the auto correlation function of the sum $W_1(t) = X(t) + Y(t)$
- (b) find the auto correlation function of difference $W_2(t) = X(t) Y(t)$
- (c) Find the cross correlation function of $W_1(t)$ and $W_2(t)$. [5+5+6]
- 7. (a) Find the ACF of the following PSD's

i.
$$S_{\chi\chi}(\omega) = \frac{157+12\omega^2}{(16+\omega^2)(9+\omega^2)}$$

ii. $S_{\chi\chi}(\omega) = \frac{8}{(9+\omega^2)^2}$

- (b) State and Prove wiener-Khinchin relations.
- 8. A random noise X(t) having power spectrum $S_{XX}(\omega) = \frac{3}{49+\omega^2}$ is applied to a to a network for which $h(t) = u(t)t^2 \exp(-7t)$. The network response is denoted by Y(t)
 - (a) What is the average power is X(t)
 - (b) Find the power spectrum of Y(t)
 - (c) Find average power of Y(t). [5+6+5]